These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 30160947)
1. Sharpening the Scissors: Mechanistic Details of CRISPR/Cas9 Improve Functional Understanding and Inspire Future Research. Raper AT; Stephenson AA; Suo Z J Am Chem Soc; 2018 Sep; 140(36):11142-11152. PubMed ID: 30160947 [TBL] [Abstract][Full Text] [Related]
2. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity. Tadić V; Josipović G; Zoldoš V; Vojta A Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448 [TBL] [Abstract][Full Text] [Related]
3. Rock paper scissors: CRISPR/Cas9-mediated interference with geminiviruses in plants. Yang X; Zhou H; Zhou X Sci China Life Sci; 2019 Oct; 62(10):1389-1391. PubMed ID: 31571024 [No Abstract] [Full Text] [Related]
4. A compact Cas9 ortholog from Staphylococcus Auricularis (SauriCas9) expands the DNA targeting scope. Hu Z; Wang S; Zhang C; Gao N; Li M; Wang D; Wang D; Liu D; Liu H; Ong SG; Wang H; Wang Y PLoS Biol; 2020 Mar; 18(3):e3000686. PubMed ID: 32226015 [TBL] [Abstract][Full Text] [Related]
5. Applying switchable Cas9 variants to in vivo gene editing for therapeutic applications. Mills EM; Barlow VL; Luk LYP; Tsai YH Cell Biol Toxicol; 2020 Feb; 36(1):17-29. PubMed ID: 31418127 [TBL] [Abstract][Full Text] [Related]
6. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology. Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606 [TBL] [Abstract][Full Text] [Related]
7. CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement. Hussain B; Lucas SJ; Budak H Brief Funct Genomics; 2018 Sep; 17(5):319-328. PubMed ID: 29912293 [TBL] [Abstract][Full Text] [Related]
9. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Hu X; Meng X; Liu Q; Li J; Wang K Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576 [TBL] [Abstract][Full Text] [Related]
10. Rapid genome editing by CRISPR-Cas9-POLD3 fusion. Reint G; Li Z; Labun K; Keskitalo S; Soppa I; Mamia K; Tolo E; Szymanska M; Meza-Zepeda LA; Lorenz S; Cieslar-Pobuda A; Hu X; Bordin DL; Staerk J; Valen E; Schmierer B; Varjosalo M; Taipale J; Haapaniemi E Elife; 2021 Dec; 10():. PubMed ID: 34898428 [TBL] [Abstract][Full Text] [Related]
15. Editor's comment on "CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein". Hohmann S Mol Genet Genomics; 2017 Jun; 292(3):535-536. PubMed ID: 28251316 [No Abstract] [Full Text] [Related]
16. Inhibition of histone deacetylase 1 (HDAC1) and HDAC2 enhances CRISPR/Cas9 genome editing. Liu B; Chen S; Rose A; Chen D; Cao F; Zwinderman M; Kiemel D; Aïssi M; Dekker FJ; Haisma HJ Nucleic Acids Res; 2020 Jan; 48(2):517-532. PubMed ID: 31799598 [TBL] [Abstract][Full Text] [Related]
17. CRISPR-Cas9; an efficient tool for precise plant genome editing. Islam W Mol Cell Probes; 2018 Jun; 39():47-52. PubMed ID: 29621557 [TBL] [Abstract][Full Text] [Related]
18. Off- and on-target effects of genome editing in mouse embryos. Ayabe S; Nakashima K; Yoshiki A J Reprod Dev; 2019 Feb; 65(1):1-5. PubMed ID: 30518723 [TBL] [Abstract][Full Text] [Related]
19. Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases (Review). Rodríguez-Rodríguez DR; Ramírez-Solís R; Garza-Elizondo MA; Garza-Rodríguez ML; Barrera-Saldaña HA Int J Mol Med; 2019 Apr; 43(4):1559-1574. PubMed ID: 30816503 [TBL] [Abstract][Full Text] [Related]
20. Cutting back malaria: CRISPR/Cas9 genome editing of Plasmodium. Lee MCS; Lindner SE; Lopez-Rubio JJ; Llinás M Brief Funct Genomics; 2019 Sep; 18(5):281-289. PubMed ID: 31365053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]