These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 30160947)

  • 21. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of CRISPR/Cas9 systems.
    Mao Y; Yang X; Zhou Y; Zhang Z; Botella JR; Zhu JK
    Genome Biol; 2018 Sep; 19(1):149. PubMed ID: 30266091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deciphering the Thermodynamic Landscape of CRISPR/Cas9: Insights into Enhancing Gene Editing Precision and Efficiency.
    Kumar A; Daripa P; Rasool K; Chakraborty D; Jain N; Maiti S
    J Phys Chem B; 2024 Sep; 128(35):8409-8422. PubMed ID: 39190773
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR-Cas9-Based Genome Editing of Human Induced Pluripotent Stem Cells.
    Giacalone JC; Sharma TP; Burnight ER; Fingert JF; Mullins RF; Stone EM; Tucker BA
    Curr Protoc Stem Cell Biol; 2018 Feb; 44():5B.7.1-5B.7.22. PubMed ID: 29512106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatiotemporal Delivery of CRISPR/Cas9 Genome Editing Machinery Using Stimuli-Responsive Vehicles.
    Cai W; Luo T; Mao L; Wang M
    Angew Chem Int Ed Engl; 2021 Apr; 60(16):8596-8606. PubMed ID: 32385892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peptide Nucleic Acid-Mediated Regulation of CRISPR-Cas9 Specificity.
    Carufe KEW; Economos NG; Glazer PM
    Nucleic Acid Ther; 2024 Oct; 34(5):245-256. PubMed ID: 39037032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plant Tissue Culture: A Battle Horse in the Genome Editing Using CRISPR/Cas9.
    Loyola-Vargas VM; Avilez-Montalvo RN
    Methods Mol Biol; 2018; 1815():131-148. PubMed ID: 29981117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The final cut: Cas9 editing.
    Taylor DW
    Nat Struct Mol Biol; 2019 Aug; 26(8):669-670. PubMed ID: 31285603
    [No Abstract]   [Full Text] [Related]  

  • 29. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-omic Analyses Reveal Minimal Impact of the CRISPR-Cas9 Nuclease on Cultured Human Cells.
    Qiang J; Ma Z; Xie X; Shi L; Geng Y; Hu J; Liu R; Liu N; Zhang Y
    J Proteome Res; 2019 Mar; 18(3):1054-1063. PubMed ID: 30672298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gene editing in clinical isolates of Candida parapsilosis using CRISPR/Cas9.
    Lombardi L; Turner SA; Zhao F; Butler G
    Sci Rep; 2017 Aug; 7(1):8051. PubMed ID: 28808289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A CRISPR/Cas9 method to generate heterozygous alleles in Saccharomyces cerevisiae.
    EauClaire SF; Webb CJ
    Yeast; 2019 Oct; 36(10):607-615. PubMed ID: 31301239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize.
    Feng C; Su H; Bai H; Wang R; Liu Y; Guo X; Liu C; Zhang J; Yuan J; Birchler JA; Han F
    Plant Biotechnol J; 2018 Nov; 16(11):1848-1857. PubMed ID: 29569825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Minimal PAM specificity of a highly similar SpCas9 ortholog.
    Chatterjee P; Jakimo N; Jacobson JM
    Sci Adv; 2018 Oct; 4(10):eaau0766. PubMed ID: 30397647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation and Reduction of CRISPR Off-Target Cleavage Events.
    Vakulskas CA; Behlke MA
    Nucleic Acid Ther; 2019 Aug; 29(4):167-174. PubMed ID: 31107154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing.
    Chen X; Chen Y; Xin H; Wan T; Ping Y
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2395-2405. PubMed ID: 31941712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR/Cas9 Genome Editing: A Promising Tool for Therapeutic Applications of Induced Pluripotent Stem Cells.
    Zhang Y; Sastre D; Wang F
    Curr Stem Cell Res Ther; 2018; 13(4):243-251. PubMed ID: 29446747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gesicle-Mediated Delivery of CRISPR/Cas9 Ribonucleoprotein Complex for Inactivating the HIV Provirus.
    Campbell LA; Coke LM; Richie CT; Fortuno LV; Park AY; Harvey BK
    Mol Ther; 2019 Jan; 27(1):151-163. PubMed ID: 30389355
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants.
    Walton RT; Christie KA; Whittaker MN; Kleinstiver BP
    Science; 2020 Apr; 368(6488):290-296. PubMed ID: 32217751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SMOOT libraries and phage-induced directed evolution of Cas9 to engineer reduced off-target activity.
    Cerchione D; Loveluck K; Tillotson EL; Harbinski F; DaSilva J; Kelley CP; Keston-Smith E; Fernandez CA; Myer VE; Jayaram H; Steinberg BE
    PLoS One; 2020; 15(4):e0231716. PubMed ID: 32298334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.