BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30161168)

  • 1. Comparison of statistical methods and the use of quality control samples for batch effect correction in human transcriptome data.
    Espín-Pérez A; Portier C; Chadeau-Hyam M; van Veldhoven K; Kleinjans JCS; de Kok TMCM
    PLoS One; 2018; 13(8):e0202947. PubMed ID: 30161168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removing Batch Effects from Longitudinal Gene Expression - Quantile Normalization Plus ComBat as Best Approach for Microarray Transcriptome Data.
    Müller C; Schillert A; Röthemeier C; Trégouët DA; Proust C; Binder H; Pfeiffer N; Beutel M; Lackner KJ; Schnabel RB; Tiret L; Wild PS; Blankenberg S; Zeller T; Ziegler A
    PLoS One; 2016; 11(6):e0156594. PubMed ID: 27272489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Letter to the Editor response: Nygaard et al.
    Towfic F; Kusko R; Zeskind B
    Biostatistics; 2017 Apr; 18(2):197-199. PubMed ID: 27780809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removing batch effects from purified plasma cell gene expression microarrays with modified ComBat.
    Stein CK; Qu P; Epstein J; Buros A; Rosenthal A; Crowley J; Morgan G; Barlogie B
    BMC Bioinformatics; 2015 Feb; 16():63. PubMed ID: 25887219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of batch effect correction methods on drug induced differential gene expression profiles.
    Zhou W; Koudijs KKM; Böhringer S
    BMC Bioinformatics; 2019 Aug; 20(1):437. PubMed ID: 31438848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How to do quantile normalization correctly for gene expression data analyses.
    Zhao Y; Wong L; Goh WWB
    Sci Rep; 2020 Sep; 10(1):15534. PubMed ID: 32968196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Batch effect reduction of microarray data with dependent samples using an empirical Bayes approach (BRIDGE).
    Xia Q; Thompson JA; Koestler DC
    Stat Appl Genet Mol Biol; 2021 Dec; 20(4-6):101-119. PubMed ID: 34905304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blind estimation and correction of microarray batch effect.
    Varma S
    PLoS One; 2020; 15(4):e0231446. PubMed ID: 32271844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ARSyN: a method for the identification and removal of systematic noise in multifactorial time course microarray experiments.
    Nueda MJ; Ferrer A; Conesa A
    Biostatistics; 2012 Jul; 13(3):553-66. PubMed ID: 22085896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GENESHIFT: a nonparametric approach for integrating microarray gene expression data based on the inner product as a distance measure between the distributions of genes.
    Lazar C; Taminau J; Meganck S; Steenhoff D; Coletta A; Solís DY; Molter C; Duque R; Bersini H; Nowé A
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(2):383-92. PubMed ID: 23929862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correcting for batch effects in case-control microbiome studies.
    Gibbons SM; Duvallet C; Alm EJ
    PLoS Comput Biol; 2018 Apr; 14(4):e1006102. PubMed ID: 29684016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some statistical issues in microarray gene expression data.
    Mayo MS; Gajewski BJ; Morris JS
    Radiat Res; 2006 Jun; 165(6):745-8. PubMed ID: 16802876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conducting gene set tests in meta-analyses of transcriptome expression data.
    Kosch R; Jung K
    Res Synth Methods; 2019 Mar; 10(1):99-112. PubMed ID: 30592170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods.
    Chen C; Grennan K; Badner J; Zhang D; Gershon E; Jin L; Liu C
    PLoS One; 2011 Feb; 6(2):e17238. PubMed ID: 21386892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of sample imbalance on identifying differentially expressed genes.
    Yang K; Li J; Gao H
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S8. PubMed ID: 17217526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AMDBNorm: an approach based on distribution adjustment to eliminate batch effects of gene expression data.
    Zhang X; Ye Z; Chen J; Qiao F
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34958674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propensity scores as a novel method to guide sample allocation and minimize batch effects during the design of high throughput experiments.
    Carry PM; Vigers T; Vanderlinden LA; Keeter C; Dong F; Buckner T; Litkowski E; Yang I; Norris JM; Kechris K
    BMC Bioinformatics; 2023 Mar; 24(1):86. PubMed ID: 36882691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covariance adjustment for batch effect in gene expression data.
    Lee JA; Dobbin KK; Ahn J
    Stat Med; 2014 Jul; 33(15):2681-95. PubMed ID: 24687561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BatMan: Mitigating Batch Effects Via Stratification for Survival Outcome Prediction.
    Ni A; Liu M; Qin LX
    JCO Clin Cancer Inform; 2023 Jun; 7():e2200138. PubMed ID: 37335961
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Zhang Y; Parmigiani G; Johnson WE
    NAR Genom Bioinform; 2020 Sep; 2(3):lqaa078. PubMed ID: 33015620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.