These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30161168)

  • 1. Comparison of statistical methods and the use of quality control samples for batch effect correction in human transcriptome data.
    Espín-Pérez A; Portier C; Chadeau-Hyam M; van Veldhoven K; Kleinjans JCS; de Kok TMCM
    PLoS One; 2018; 13(8):e0202947. PubMed ID: 30161168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removing Batch Effects from Longitudinal Gene Expression - Quantile Normalization Plus ComBat as Best Approach for Microarray Transcriptome Data.
    Müller C; Schillert A; Röthemeier C; Trégouët DA; Proust C; Binder H; Pfeiffer N; Beutel M; Lackner KJ; Schnabel RB; Tiret L; Wild PS; Blankenberg S; Zeller T; Ziegler A
    PLoS One; 2016; 11(6):e0156594. PubMed ID: 27272489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Letter to the Editor response: Nygaard et al.
    Towfic F; Kusko R; Zeskind B
    Biostatistics; 2017 Apr; 18(2):197-199. PubMed ID: 27780809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removing batch effects from purified plasma cell gene expression microarrays with modified ComBat.
    Stein CK; Qu P; Epstein J; Buros A; Rosenthal A; Crowley J; Morgan G; Barlogie B
    BMC Bioinformatics; 2015 Feb; 16():63. PubMed ID: 25887219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of batch effect correction methods on drug induced differential gene expression profiles.
    Zhou W; Koudijs KKM; Böhringer S
    BMC Bioinformatics; 2019 Aug; 20(1):437. PubMed ID: 31438848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How to do quantile normalization correctly for gene expression data analyses.
    Zhao Y; Wong L; Goh WWB
    Sci Rep; 2020 Sep; 10(1):15534. PubMed ID: 32968196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Batch effect reduction of microarray data with dependent samples using an empirical Bayes approach (BRIDGE).
    Xia Q; Thompson JA; Koestler DC
    Stat Appl Genet Mol Biol; 2021 Dec; 20(4-6):101-119. PubMed ID: 34905304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ARSyN: a method for the identification and removal of systematic noise in multifactorial time course microarray experiments.
    Nueda MJ; Ferrer A; Conesa A
    Biostatistics; 2012 Jul; 13(3):553-66. PubMed ID: 22085896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GENESHIFT: a nonparametric approach for integrating microarray gene expression data based on the inner product as a distance measure between the distributions of genes.
    Lazar C; Taminau J; Meganck S; Steenhoff D; Coletta A; Solís DY; Molter C; Duque R; Bersini H; Nowé A
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(2):383-92. PubMed ID: 23929862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correcting for batch effects in case-control microbiome studies.
    Gibbons SM; Duvallet C; Alm EJ
    PLoS Comput Biol; 2018 Apr; 14(4):e1006102. PubMed ID: 29684016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some statistical issues in microarray gene expression data.
    Mayo MS; Gajewski BJ; Morris JS
    Radiat Res; 2006 Jun; 165(6):745-8. PubMed ID: 16802876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covariance adjustment for batch effect in gene expression data.
    Lee JA; Dobbin KK; Ahn J
    Stat Med; 2014 Jul; 33(15):2681-95. PubMed ID: 24687561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conducting gene set tests in meta-analyses of transcriptome expression data.
    Kosch R; Jung K
    Res Synth Methods; 2019 Mar; 10(1):99-112. PubMed ID: 30592170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods.
    Chen C; Grennan K; Badner J; Zhang D; Gershon E; Jin L; Liu C
    PLoS One; 2011 Feb; 6(2):e17238. PubMed ID: 21386892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of sample imbalance on identifying differentially expressed genes.
    Yang K; Li J; Gao H
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S8. PubMed ID: 17217526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AMDBNorm: an approach based on distribution adjustment to eliminate batch effects of gene expression data.
    Zhang X; Ye Z; Chen J; Qiao F
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34958674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propensity scores as a novel method to guide sample allocation and minimize batch effects during the design of high throughput experiments.
    Carry PM; Vigers T; Vanderlinden LA; Keeter C; Dong F; Buckner T; Litkowski E; Yang I; Norris JM; Kechris K
    BMC Bioinformatics; 2023 Mar; 24(1):86. PubMed ID: 36882691
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Zhang Y; Parmigiani G; Johnson WE
    NAR Genom Bioinform; 2020 Sep; 2(3):lqaa078. PubMed ID: 33015620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BatMan: Mitigating Batch Effects Via Stratification for Survival Outcome Prediction.
    Ni A; Liu M; Qin LX
    JCO Clin Cancer Inform; 2023 Jun; 7():e2200138. PubMed ID: 37335961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empirical Bayes accomodation of batch-effects in microarray data using identical replicate reference samples: application to RNA expression profiling of blood from Duchenne muscular dystrophy patients.
    Walker WL; Liao IH; Gilbert DL; Wong B; Pollard KS; McCulloch CE; Lit L; Sharp FR
    BMC Genomics; 2008 Oct; 9():494. PubMed ID: 18937867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.