These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 30161174)

  • 1. Learning unfamiliar pitch intervals: A novel paradigm for demonstrating the learning of statistical associations between musical pitches.
    Leung Y; Dean RT
    PLoS One; 2018; 13(8):e0203026. PubMed ID: 30161174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are lexical tones musical? Native language's influence on neural response to pitch in different domains.
    Chen A; Peter V; Wijnen F; Schnack H; Burnham D
    Brain Lang; 2018; 180-182():31-41. PubMed ID: 29689493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of posterior parietal and dorsal premotor cortices in relative pitch processing: Comparing musical intervals to lexical tones.
    Tsai CG; Chou TL; Li CW
    Neuropsychologia; 2018 Oct; 119():118-127. PubMed ID: 30056054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New music system reveals spectral contribution to statistical learning.
    Loui P
    Cognition; 2022 Jul; 224():105071. PubMed ID: 35227982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Different Are Our Perceptions of Equal-Tempered and Microtonal Intervals? A Behavioural and EEG Survey.
    Bailes F; Dean RT; Broughton MC
    PLoS One; 2015; 10(8):e0135082. PubMed ID: 26285010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distributional learning of musical pitch despite tone deafness in individuals with congenital amusia.
    Zhu J; Chen X; Chen F; Zhang C; Shao J; Wiener S
    J Acoust Soc Am; 2023 May; 153(5):3117. PubMed ID: 37232583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An interval size illusion: the influence of timbre on the perceived size of melodic intervals.
    Russo FA; Thompson WF
    Percept Psychophys; 2005 May; 67(4):559-68. PubMed ID: 16134451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perception of pitch height in lexical and musical tones by English-speaking musicians and nonmusicians.
    Lee CY; Lekich A; Zhang Y
    J Acoust Soc Am; 2014 Mar; 135(3):1607-15. PubMed ID: 24606295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Audio-visual interactions uniquely contribute to resolution of visual conflict in people possessing absolute pitch.
    Kim S; Blake R; Lee M; Kim CY
    PLoS One; 2017; 12(4):e0175103. PubMed ID: 28380058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perceptual interactions between musical pitch and timbre.
    Krumhansl CL; Iverson P
    J Exp Psychol Hum Percept Perform; 1992 Aug; 18(3):739-51. PubMed ID: 1500873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm.
    Vuust P; Brattico E; Seppänen M; Näätänen R; Tervaniemi M
    Neuropsychologia; 2012 Jun; 50(7):1432-43. PubMed ID: 22414595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Audiovisual Interval Size Estimation Is Associated with Early Musical Training.
    Abel MK; Li HC; Russo FA; Schlaug G; Loui P
    PLoS One; 2016; 11(10):e0163589. PubMed ID: 27760134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking of pitch probabilities in congenital amusia.
    Omigie D; Pearce MT; Stewart L
    Neuropsychologia; 2012 Jun; 50(7):1483-93. PubMed ID: 22414591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Musical instrument familiarity affects statistical learning of tone sequences.
    Van Hedger SC; Johnsrude IS; Batterink LJ
    Cognition; 2022 Jan; 218():104949. PubMed ID: 34768123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of microtonal melodies: effects of scale-step size, serial order, and training.
    Parncutt R; Cohen AJ
    Percept Psychophys; 1995 Aug; 57(6):835-46. PubMed ID: 7651808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Musical training shapes neural responses to melodic and prosodic expectation.
    Zioga I; Di Bernardi Luft C; Bhattacharya J
    Brain Res; 2016 Nov; 1650():267-282. PubMed ID: 27622645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning novel musical pitch via distributional learning.
    Ong JH; Burnham D; Stevens CJ
    J Exp Psychol Learn Mem Cogn; 2017 Jan; 43(1):150-157. PubMed ID: 27149394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural basis of music imagery and the effect of musical expertise.
    Herholz SC; Lappe C; Knief A; Pantev C
    Eur J Neurosci; 2008 Dec; 28(11):2352-60. PubMed ID: 19046375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harmonic context influences pitch class equivalence judgments through gestalt and congruency effects.
    Slana A; Repovš G; Fitch WT; Gingras B
    Acta Psychol (Amst); 2016 May; 166():54-63. PubMed ID: 27058166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ear Advantage for Musical Location and Relative Pitch: Effects of Musical Training and Attention.
    Hutchison JL; Hubbard TL; Hubbard NA; Rypma B
    Perception; 2017 Jun; 46(6):745-762. PubMed ID: 28523983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.