BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 30161200)

  • 1. Silencing efficiency of dsRNA fragments targeting Fusarium graminearum TRI6 and patterns of small interfering RNA associated with reduced virulence and mycotoxin production.
    Baldwin T; Islamovic E; Klos K; Schwartz P; Gillespie J; Hunter S; Bregitzer P
    PLoS One; 2018; 13(8):e0202798. PubMed ID: 30161200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Double-Stranded RNAs Targeting
    Hao G; McCormick S; Vaughan MM
    Phytopathology; 2021 Nov; 111(11):2080-2087. PubMed ID: 33823648
    [No Abstract]   [Full Text] [Related]  

  • 3. Altered trichothecene biosynthesis in TRI6-silenced transformants of Fusarium culmorum influences the severity of crown and foot rot on durum wheat seedlings.
    Scherm B; Orrù M; Balmas V; Spanu F; Azara E; Delogu G; Hammond TM; Keller NP; Migheli Q
    Mol Plant Pathol; 2011 Oct; 12(8):759-71. PubMed ID: 21726376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leucine metabolism regulates TRI6 expression and affects deoxynivalenol production and virulence in Fusarium graminearum.
    Subramaniam R; Narayanan S; Walkowiak S; Wang L; Joshi M; Rocheleau H; Ouellet T; Harris LJ
    Mol Microbiol; 2015 Nov; 98(4):760-9. PubMed ID: 26248604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of TRI5 expression and deoxynivalenol biosynthesis by a long non-coding RNA in Fusarium graminearum.
    Huang P; Yu X; Liu H; Ding M; Wang Z; Xu JR; Jiang C
    Nat Commun; 2024 Feb; 15(1):1216. PubMed ID: 38332031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cyclase-associated protein FgCap1 has both protein kinase A-dependent and -independent functions during deoxynivalenol production and plant infection in Fusarium graminearum.
    Yin T; Zhang Q; Wang J; Liu H; Wang C; Xu JR; Jiang C
    Mol Plant Pathol; 2018 Mar; 19(3):552-563. PubMed ID: 28142217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deoxynivalenol biosynthesis-related gene expression during wheat kernel colonization by Fusarium graminearum.
    Hallen-Adams HE; Wenner N; Kuldau GA; Trail F
    Phytopathology; 2011 Sep; 101(9):1091-6. PubMed ID: 21521001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different Components of the RNA Interference Machinery Are Required for Conidiation, Ascosporogenesis, Virulence, Deoxynivalenol Production, and Fungal Inhibition by Exogenous Double-Stranded RNA in the Head Blight Pathogen
    Gaffar FY; Imani J; Karlovsky P; Koch A; Kogel KH
    Front Microbiol; 2019; 10():1662. PubMed ID: 31616385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secondary amplification of siRNA machinery limits the application of spray-induced gene silencing.
    Song XS; Gu KX; Duan XX; Xiao XM; Hou YP; Duan YB; Wang JX; Yu N; Zhou MG
    Mol Plant Pathol; 2018 Dec; 19(12):2543-2560. PubMed ID: 30027625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NX Trichothecenes Are Required for
    Hao G; McCormick S; Tiley H; Gutiérrez S; Yulfo-Soto G; Vaughan MM; Ward TJ
    Mol Plant Microbe Interact; 2023 May; 36(5):294-304. PubMed ID: 36653184
    [No Abstract]   [Full Text] [Related]  

  • 11. 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) inhibits trichothecene production by Fusarium graminearum through suppression of Tri6 expression.
    Etzerodt T; Maeda K; Nakajima Y; Laursen B; Fomsgaard IS; Kimura M
    Int J Food Microbiol; 2015 Dec; 214():123-128. PubMed ID: 26276561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of wheat (Triticum aestivum L.) resistance, Fusarium graminearum DNA content, strain potential toxin production, and disease severity on deoxynivalenol content.
    Fan P; Gu K; Wu J; Zhou M; Chen C
    J Basic Microbiol; 2019 Nov; 59(11):1105-1111. PubMed ID: 31497881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum.
    Jiang C; Zhang C; Wu C; Sun P; Hou R; Liu H; Wang C; Xu JR
    Environ Microbiol; 2016 Nov; 18(11):3689-3701. PubMed ID: 26940955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic profiling of wheat rachis node infection by Fusarium graminearum - decoding deoxynivalenol-dependent susceptibility.
    Bönnighausen J; Schauer N; Schäfer W; Bormann J
    New Phytol; 2019 Jan; 221(1):459-469. PubMed ID: 30084118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flippases play specific but distinct roles in the development, pathogenicity, and secondary metabolism of Fusarium graminearum.
    Yun Y; Guo P; Zhang J; You H; Guo P; Deng H; Hao Y; Zhang L; Wang X; Abubakar YS; Zhou J; Lu G; Wang Z; Zheng W
    Mol Plant Pathol; 2020 Oct; 21(10):1307-1321. PubMed ID: 32881238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput FACS-based mutant screen identifies a gain-of-function allele of the Fusarium graminearum adenylyl cyclase causing deoxynivalenol over-production.
    Blum A; Benfield AH; Stiller J; Kazan K; Batley J; Gardiner DM
    Fungal Genet Biol; 2016 May; 90():1-11. PubMed ID: 26932301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SNARE protein FgVam7 controls growth, asexual and sexual development, and plant infection in Fusarium graminearum.
    Zhang H; Li B; Fang Q; Li Y; Zheng X; Zhang Z
    Mol Plant Pathol; 2016 Jan; 17(1):108-19. PubMed ID: 25880818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNAi as an emerging approach to control Fusarium head blight disease and mycotoxin contamination in cereals.
    Machado AK; Brown NA; Urban M; Kanyuka K; Hammond-Kosack KE
    Pest Manag Sci; 2018 Apr; 74(4):790-799. PubMed ID: 28967180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel genes of Fusarium graminearum that negatively regulate deoxynivalenol production and virulence.
    Gardiner DM; Kazan K; Manners JM
    Mol Plant Microbe Interact; 2009 Dec; 22(12):1588-600. PubMed ID: 19888824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in Understanding
    Niu G; Yang Q; Liao Y; Sun D; Tang Z; Wang G; Xu M; Wang C; Kang J
    Genes (Basel); 2024 Apr; 15(4):. PubMed ID: 38674409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.