These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 3016178)

  • 21. CSF monoamine metabolites in mania.
    Swann AC; Secunda S; Davis JM; Robins E; Hanin I; Koslow SH; Maas JW
    Am J Psychiatry; 1983 Apr; 140(4):396-400. PubMed ID: 6188381
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dexmedetomidine diminishes halothane anesthetic requirements in rats through a postsynaptic alpha 2 adrenergic receptor.
    Segal IS; Vickery RG; Walton JK; Doze VA; Maze M
    Anesthesiology; 1988 Dec; 69(6):818-23. PubMed ID: 2848424
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuronal responses to noradrenaline in the cerebral cortex: evidence against the involvement of alpha 2-adrenoceptors.
    Bradshaw CM; Sheridan RD; Szabadi E
    Br J Pharmacol; 1984 Jun; 82(2):453-8. PubMed ID: 6145471
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lower CSF homovanillic acid levels in depressed patients with a history of alcoholism.
    Sher L; Oquendo MA; Li S; Huang YY; Grunebaum MF; Burke AK; Malone KM; Mann JJ
    Neuropsychopharmacology; 2003 Sep; 28(9):1712-9. PubMed ID: 12825091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dexmedetomidine produces a hypnotic-anesthetic action in rats via activation of central alpha-2 adrenoceptors.
    Doze VA; Chen BX; Maze M
    Anesthesiology; 1989 Jul; 71(1):75-9. PubMed ID: 2568769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrophysiological evidence for alpha 1- and alpha 2-adrenoceptors in solitary tract nucleus.
    Feldman PD; Moises HC
    Am J Physiol; 1988 Apr; 254(4 Pt 2):H756-62. PubMed ID: 2895589
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dystrobrevin-binding protein 1 gene (DTNBP1) variants associated with cerebrospinal fluid homovanillic acid and 5-hydroxyindoleacetic acid concentrations in healthy volunteers.
    Andreou D; Saetre P; Kähler AK; Werge T; Andreassen OA; Agartz I; Sedvall GC; Hall H; Terenius L; Jönsson EG
    Eur Neuropsychopharmacol; 2011 Sep; 21(9):700-4. PubMed ID: 21295953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noradrenergic mechanisms in hippocampal kindling with rapidly recurring seizures.
    Kokaia M; Bengzon J; Kalén P; Lindvall O
    Brain Res; 1989 Jul; 491(2):398-402. PubMed ID: 2569912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Biochemical studies in delirium tremens (author's transl)].
    Athen D; Beckmann H; Ackenheil M; Markianos E
    Arzneimittelforschung; 1978; 28(9):1527-8. PubMed ID: 582551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrophysiological effects of locally applied noradrenergic agents at cerebellar Purkinje neurons: receptor specificity.
    Parfitt KD; Freedman R; Bickford-Wimer PC
    Brain Res; 1988 Oct; 462(2):242-51. PubMed ID: 2847850
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Newly synthesized noradrenaline mediates the alpha 2-adrenoceptor inhibition of [3H]5-hydroxytryptamine release induced by beta-phenylethylamine in rat hippocampal slices.
    Benkirane S; Arbilla S; Langer SZ
    Eur J Pharmacol; 1986 Nov; 131(2-3):189-98. PubMed ID: 3028829
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of parameters for central neuronal activity in cerebrospinal fluid of rabbits following yohimbine.
    Dillen L; Claeys M; De Potter WP
    Biochem Pharmacol; 1986 Nov; 35(22):3977-82. PubMed ID: 2430573
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Concentration gradients of monoamine metabolites in human cerebrospinal fluid.
    Sjöström R; Ekstedt J; Anggård E
    J Neurol Neurosurg Psychiatry; 1975 Jul; 38(7):666-8. PubMed ID: 1159438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3-Methoxy-4-hydroxy-phenylglycol sulfate (MOPEG-SO4) in ventricular and cisternal cerebrospinal fluid of dogs.
    Bareggi SR; Stabenau JR; Shaskan EG; Becker RE; Roberts M
    J Neurosci Res; 1975; 1(5-6):471-4. PubMed ID: 1226000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The involvement of noradrenergic transmission in the morphine-induced locomotor hyperactivity in mice withdrawn from repeated morphine treatment.
    Airio J; Ahtee L
    Br J Pharmacol; 1999 Apr; 126(7):1609-19. PubMed ID: 10323593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3-Methoxy-4-hydroxyphenylethyleneglycol concentrations in discrete hypothalamic nuclei reflect the activity of noradrenergic neurons.
    Lookingland KJ; Ireland LM; Gunnet JW; Manzanares J; Tian Y; Moore KE
    Brain Res; 1991 Sep; 559(1):82-8. PubMed ID: 1685939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cerebrospinal fluid catecholamine metabolites in HIV-infected patients.
    Larsson M; Hagberg L; Forsman A; Norkrans G
    J Neurosci Res; 1991 Mar; 28(3):406-9. PubMed ID: 1856886
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cerebrospinal fluid monoamine metabolites during alcohol withdrawal syndrome and recovered state.
    Fujimoto A; Nagao T; Ebara T; Sato M; Otsuki S
    Biol Psychiatry; 1983 Oct; 18(10):1141-52. PubMed ID: 6197099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3,4-Dihydroxyphenylethylamine and 5-hydroxytryptamine metabolism in the rat: acidic metabolites in cisternal cerebrospinal fluid before and after giving probenecid.
    Curzon G; Hutson PH; Kantamaneni BD; Sahakian BJ; Sarna GS
    J Neurochem; 1985 Aug; 45(2):508-13. PubMed ID: 2409231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monoamine metabolites in human cerebrospinal fluid: indicators of neuronal activity?
    Scheinin M
    Med Biol; 1985; 63(1):1-17. PubMed ID: 2582215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.