These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 3016180)

  • 41. Age-dependent changes in brain glycine concentration and strychnine-induced seizures in the rat.
    Hunter C; Chung E; Van Woert MH
    Brain Res; 1989 Mar; 482(2):247-51. PubMed ID: 2706486
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Postnatal development of [3H]flunitrazepam and [3H]strychnine binding sites in rat spinal cord localized by quantitative autoradiography.
    Brüning G; Bauer R; Baumgarten HG
    Neurosci Lett; 1990 Mar; 110(1-2):6-10. PubMed ID: 2158019
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of [3H]thiocolchicoside binding sites in rat spinal cord and cerebral cortex.
    Balduini W; Cimino M; Depoortere H; Cattabeni F
    Eur J Pharmacol; 1999 Jul; 376(1-2):149-57. PubMed ID: 10440100
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bicuculline-sensitive and insensitive effects of THIP on the binding of [3H]flunitrazepam.
    Zarkovsky AM
    Neuropharmacology; 1987 Jul; 26(7A):737-41. PubMed ID: 3627382
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The glycine receptor in the mutant mouse spastic (spa): strychnine binding characteristics and pharmacology.
    White WF
    Brain Res; 1985 Mar; 329(1-2):1-6. PubMed ID: 2983837
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemical modification of the glycine receptor with fluorescein isothiocyanate specifically affects the interaction of glycine with its binding site.
    Ruiz Gómez A; Fernández-Shaw C; Valdivieso F; Mayor F
    Biochem Biophys Res Commun; 1989 Apr; 160(1):374-81. PubMed ID: 2540750
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characteristics of glycine-activated conductances in cultured medullary neurons from embryonic rat.
    Lewis CA; Ahmed Z; Faber DS
    Neurosci Lett; 1989 Jan; 96(2):185-90. PubMed ID: 2538783
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional properties of glycine receptors expressed in primary cultures of mouse cerebellar granule cells.
    Elster L; Banke T; Kristiansen U; Schousboe A; Wahl P
    Neuroscience; 1998 May; 84(2):519-28. PubMed ID: 9539222
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The extracellular disulfide loop motif of the inhibitory glycine receptor does not form the agonist binding site.
    Vandenberg RJ; Rajendra S; French CR; Barry PH; Schofield PR
    Mol Pharmacol; 1993 Jul; 44(1):198-203. PubMed ID: 8393521
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sensitive procedures for measuring chloride fluxes mediated by the purified glycine receptor incorporated into phospholipid vesicles.
    García-Calvo M; Valdivieso F; Mayor F; Vázquez J
    Neurosci Lett; 1992 Feb; 136(1):102-4. PubMed ID: 1321962
    [TBL] [Abstract][Full Text] [Related]  

  • 51. GABA-agonists induce the formation of low-affinity GABA-receptors on cultured cerebellar granule cells via preexisting high affinity GABA receptors.
    Belhage B; Meier E; Schousboe A
    Neurochem Res; 1986 Apr; 11(4):599-606. PubMed ID: 3014362
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interactions of glycine and strychnine with their receptor recognition sites in mouse spinal cord.
    O'Connor V; Phelan PP; Fry JP
    Neurochem Int; 1996 Oct; 29(4):423-34. PubMed ID: 8939452
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On a molecular comparison of strong and weak antagonists at the glycinergic receptor.
    Aprison MH; Galvez-Ruano E; Lipkowitz KB
    J Neurosci Res; 1995 Jun; 41(2):259-69. PubMed ID: 7650761
    [TBL] [Abstract][Full Text] [Related]  

  • 54. NMDA receptor antagonists that bind to the strychnine-insensitive glycine site and inhibit NMDA-induced Ca2+ fluxes and [3H]GABA release.
    Reynolds IJ; Harris KM; Miller RJ
    Eur J Pharmacol; 1989 Mar; 172(1):9-17. PubMed ID: 2541002
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Glycine high affinity uptake and strychnine binding associated with glycine receptors in the frog central nervous system.
    Müller WE; Snyder SH
    Brain Res; 1978 Mar; 143(3):487-98. PubMed ID: 25692
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chemical modification of spinal cord membranes reveals [3H]strychnine binding sites that are not located on the 48 kDa subunit of the synaptic glycine receptor.
    O'Connor VM; de Alwis MA; Khan JA; Fry JP
    Biochem Soc Trans; 1990 Oct; 18(5):893. PubMed ID: 1964652
    [No Abstract]   [Full Text] [Related]  

  • 57. Purification and characterization of the glycine receptor of pig spinal cord.
    Graham D; Pfeiffer F; Simler R; Betz H
    Biochemistry; 1985 Feb; 24(4):990-4. PubMed ID: 2581608
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of inhibitors of protein synthesis and intracellular transport on the gamma-aminobutyric acid agonist-induced functional differentiation of cultured cerebellar granule cells.
    Belhage B; Hansen GH; Meier E; Schousboe A
    J Neurochem; 1990 Oct; 55(4):1107-13. PubMed ID: 2168931
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3- and 5-isoxazolol zwitterions: an ab initio molecular orbital study relating to GABA agonism and antagonism.
    Boulanger T; Vercauteren DP; Durant F; Andre JM
    J Theor Biol; 1987 Aug; 127(4):479-89. PubMed ID: 2832660
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The glycine receptor deficiency of the mutant mouse spastic: evidence for normal glycine receptor structure and localization.
    Becker CM; Hermans-Borgmeyer I; Schmitt B; Betz H
    J Neurosci; 1986 May; 6(5):1358-64. PubMed ID: 3012014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.