These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 301622)

  • 1. [Structure of the morphogenetic movements of gastrulation in Anura. I. Destabilization of ooplasmic segregation and cleavage under the action of clinostatic rotation].
    Dorfman IaG; Cherdantsev VG
    Ontogenez; 1977; 8(3):238-50. PubMed ID: 301622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Structure of the morphogenetic movements of gastrulation in Anura. II. The elementary morphogenetic processes].
    Dorfman IaG; Cherdantsev VG
    Ontogenez; 1977; 8(3):251-62. PubMed ID: 301623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Spatial deployments of morphogenetic movements as elements of the oral field in anuran amphibians. II. The structure of the oral field].
    Cherdantsev VG
    Ontogenez; 1977; 8(4):348-60. PubMed ID: 302927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study of the cytostatic action of the cytoplasm of oocytes and mature ova of the common frog and sturgeon (Acipenser stellatus)].
    Chulitskaia EV; Fel'gengauér PE
    Ontogenez; 1977; 8(3):305-8. PubMed ID: 301625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytoskeletal mechanisms of ooplasmic segregation in annelid eggs.
    Shimizu T
    Int J Dev Biol; 1999 Jan; 43(1):11-8. PubMed ID: 10213078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Spatial deployments of morphogenetic movements as elements of the oral field in anuran amphibians. I. Structurally stable morphogenetic movements].
    Cherdantsev VG
    Ontogenez; 1977; 8(4):335-47. PubMed ID: 302926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reorganization of cytoplasm in the zebrafish oocyte and egg during early steps of ooplasmic segregation.
    Fernández J; Valladares M; Fuentes R; Ubilla A
    Dev Dyn; 2006 Mar; 235(3):656-71. PubMed ID: 16425221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A gastrulation center in the ascidian egg.
    Jeffery WR
    Dev Suppl; 1992; ():53-63. PubMed ID: 1299368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Visualization of the cytoplasmic segregation structure by using computed microscopy].
    Dorfman IaG; Istomin VV
    Biull Eksp Biol Med; 1986 Mar; 101(3):351-3. PubMed ID: 3485455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a functional role of the cytoskeleton in determination of the dorsoventral axis in Xenopus laevis eggs.
    Ubbels GA; Hara K; Koster CH; Kirschner MW
    J Embryol Exp Morphol; 1983 Oct; 77():15-37. PubMed ID: 6689175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Ooplasmic segregation and morphological axis formation in the polychaete Nereis virens embryo].
    Kostiuchenko RP; Dondua AK
    Ontogenez; 2000; 31(2):120-31. PubMed ID: 10776639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep cytoplasmic rearrangements in ventralized Xenopus embryos.
    Brown EE; Denegre JM; Danilchik MV
    Dev Biol; 1993 Nov; 160(1):148-56. PubMed ID: 8224531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An old enigma: the gray crescent of amphibian eggs.
    Brachet J
    Curr Top Dev Biol; 1977; 11():133-86. PubMed ID: 332453
    [No Abstract]   [Full Text] [Related]  

  • 14. A factor necessary for normal morphogenetic function of anuran endoderm.
    Ansevin KD; Williams BJ
    J Exp Zool; 1979 May; 208(2):233-43. PubMed ID: 313976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Electron microscopic study of rapid morphogenetic processes in embryonic tissue explants of amphibia].
    Luchinskaia NN; Belousov LV
    Ontogenez; 1977; 8(3):263-8. PubMed ID: 301624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Free radical processes in the embryogenesis of Anura].
    Melekhova OP
    Ontogenez; 1976; 7(2):131-40. PubMed ID: 1088372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of variable gravitational fields on the embryonic development of some ecaudate amphibians.
    Popov VV; Palmbakh LR; Kuznetsov EV
    Life Sci Space Res; 1975; 13():29-32. PubMed ID: 11913425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organisation of Xenopus egg cytoplasm: response to simulated microgravity.
    Smith RC; Neff AW
    J Exp Zool; 1986 Sep; 239(3):365-78. PubMed ID: 3760807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of clinostat rotation on fertilized amphibian egg pattern specification.
    Neff AW; Smith RC; Chung HM; Malacinski GM
    Physiologist; 1984; 27(6 Suppl):S139-40. PubMed ID: 11539005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural development of the vestibular system under conditions of simulated weightlessness.
    Neubert J
    Aviat Space Environ Med; 1979 Oct; 50(10):1058-61. PubMed ID: 316324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.