These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30162695)

  • 21. Adulterations in Basmati rice detected quantitatively by combined use of microsatellite and fragrance typing with High Resolution Melting (HRM) analysis.
    Ganopoulos I; Argiriou A; Tsaftaris A
    Food Chem; 2011 Nov; 129(2):652-659. PubMed ID: 30634282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection and quantification of adulterations in aged wine using RGB digital images combined with multivariate chemometric techniques.
    Herrero-Latorre C; Barciela-García J; García-Martín S; Peña-Crecente RM
    Food Chem X; 2019 Sep; 3():100046. PubMed ID: 31432023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fusion of near-infrared and fluorescence spectroscopy for untargeted fraud detection of Chinese tea seed oil using chemometric methods.
    Hu O; Chen J; Gao P; Li G; Du S; Fu H; Shi Q; Xu L
    J Sci Food Agric; 2019 Mar; 99(5):2285-2291. PubMed ID: 30324617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolomics for the Authentication of Natural Extracts Used in Flavors and Fragrances: the Case Study of Violet Leaf Absolutes from Viola odorata.
    Saint-Lary L; Roy C; Paris JP; Martin JF; Thomas OP; Fernandez X
    Chem Biodivers; 2016 Jun; 13(6):737-47. PubMed ID: 27135901
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Triacylglycerols in edible oils: Determination, characterization, quantitation, chemometric approach and evaluation of adulterations.
    Indelicato S; Bongiorno D; Pitonzo R; Di Stefano V; Calabrese V; Indelicato S; Avellone G
    J Chromatogr A; 2017 Sep; 1515():1-16. PubMed ID: 28801042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Feasibility of near-infrared spectroscopy to detect and to quantify adulterants in cow milk.
    Kasemsumran S; Thanapase W; Kiatsoonthon A
    Anal Sci; 2007 Jul; 23(7):907-10. PubMed ID: 17625339
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adverse child health impacts resulting from food adulterations in the Greater China Region.
    Li WC; Chow CF
    J Sci Food Agric; 2017 Sep; 97(12):3897-3916. PubMed ID: 28466508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dietary supplements: International legal framework and adulteration profiles, and characteristics of products on the Brazilian clandestine market.
    da Justa Neves DB; Caldas ED
    Regul Toxicol Pharmacol; 2015 Oct; 73(1):93-104. PubMed ID: 26107294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Barcode High Resolution Melting (Bar-HRM) analysis for detection and quantification of PDO "Fava Santorinis" (Lathyrus clymenum) adulterants.
    Ganopoulos I; Madesis P; Darzentas N; Argiriou A; Tsaftaris A
    Food Chem; 2012 Jul; 133(2):505-12. PubMed ID: 25683426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Urinary melamine: proposed parameter of melamine adulteration of food.
    Rai N; Banerjee D; Bhattacharyya R
    Nutrition; 2014 Apr; 30(4):380-5. PubMed ID: 24206822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Food adulteration: Sources, health risks, and detection methods.
    Bansal S; Singh A; Mangal M; Mangal AK; Kumar S
    Crit Rev Food Sci Nutr; 2017 Apr; 57(6):1174-1189. PubMed ID: 26054861
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adulteration of Argentinean milk fats with animal fats: Detection by fatty acids analysis and multivariate regression techniques.
    Rebechi SR; Vélez MA; Vaira S; Perotti MC
    Food Chem; 2016 Feb; 192():1025-32. PubMed ID: 26304443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-throughput analysis by SP-LDI-MS for fast identification of adulterations in commercial balsamic vinegars.
    Guerreiro TM; de Oliveira DN; Ferreira MS; Catharino RR
    Anal Chim Acta; 2014 Aug; 838():86-92. PubMed ID: 25064247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Responses to dietary adulterations in rats with zona incerta lesions.
    Dalton LD; Grossman SP
    Physiol Behav; 1982 Jul; 29(1):51-60. PubMed ID: 7122735
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Implementation of chemometrics in quality evaluation of food and beverages.
    Efenberger-Szmechtyk M; Nowak A; Kregiel D
    Crit Rev Food Sci Nutr; 2018 Jul; 58(10):1747-1766. PubMed ID: 28128644
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Food fingerprints - A valuable tool to monitor food authenticity and safety.
    Medina S; Pereira JA; Silva P; Perestrelo R; Câmara JS
    Food Chem; 2019 Apr; 278():144-162. PubMed ID: 30583355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MALDI-TOF-MS Platform for Integrated Proteomic and Peptidomic Profiling of Milk Samples Allows Rapid Detection of Food Adulterations.
    Sassi M; Arena S; Scaloni A
    J Agric Food Chem; 2015 Jul; 63(27):6157-71. PubMed ID: 26098723
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative high-resolution melting analysis for detecting adulterations.
    Mader E; Ruzicka J; Schmiderer C; Novak J
    Anal Biochem; 2011 Feb; 409(1):153-5. PubMed ID: 20946863
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of lag-k autocorrelation coefficient and the TGA signals approach to detecting and quantifying adulterations of extra virgin olive oil with inferior edible oils.
    Torrecilla JS; García J; García S; Rodríguez F
    Anal Chim Acta; 2011 Mar; 688(2):140-5. PubMed ID: 21334478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Untargeted detection and quantitative analysis of poplar balata (PB) in Chinese propolis by FT-NIR spectroscopy and chemometrics.
    Xu L; Yan SM; Cai CB; Yu XP
    Food Chem; 2013 Dec; 141(4):4132-7. PubMed ID: 23993596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.