These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 3016300)

  • 1. cis Functions involved in replication and cleavage-encapsidation of pseudorabies virus.
    Wu CA; Harper L; Ben-Porat T
    J Virol; 1986 Aug; 59(2):318-27. PubMed ID: 3016300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis for interference of defective interfering particles of pseudorabies virus with replication of standard virus.
    Wu CA; Harper L; Ben-Porat T
    J Virol; 1986 Aug; 59(2):308-17. PubMed ID: 3016299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Herpes simplex virus amplicon: effect of size on replication of constructed defective genomes containing eucaryotic DNA sequences.
    Kwong AD; Frenkel N
    J Virol; 1984 Sep; 51(3):595-603. PubMed ID: 6088785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The capsid-associated UL25 protein of the alphaherpesvirus pseudorabies virus is nonessential for cleavage and encapsidation of genomic DNA but is required for nuclear egress of capsids.
    Klupp BG; Granzow H; Keil GM; Mettenleiter TC
    J Virol; 2006 Jul; 80(13):6235-46. PubMed ID: 16775311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome location and identification of functions defective in the Bartha vaccine strain of pseudorabies virus.
    Lomniczi B; Watanabe S; Ben-Porat T; Kaplan AS
    J Virol; 1987 Mar; 61(3):796-801. PubMed ID: 3027406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple defects in the genome of pseudorabies virus can affect virulence without detectably affecting replication in cell culture.
    Lomniczi B; Kaplan AS; Ben-Porat T
    Virology; 1987 Nov; 161(1):181-9. PubMed ID: 2823461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rescue and replication of adeno-associated virus type 2 as well as vector DNA sequences from recombinant plasmids containing deletions in the viral inverted terminal repeats: selective encapsidation of viral genomes in progeny virions.
    Wang XS; Ponnazhagan S; Srivastava A
    J Virol; 1996 Mar; 70(3):1668-77. PubMed ID: 8627687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragments from both termini of the herpes simplex virus type 1 genome contain signals required for the encapsidation of viral DNA.
    Stow ND; McMonagle EC; Davison AJ
    Nucleic Acids Res; 1983 Dec; 11(23):8205-20. PubMed ID: 6324078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of the pseudorabies virus genome at the end of the inverted repeat sequences proximal to the junction with the short unique region.
    Zhang G; Leader DP
    J Gen Virol; 1990 Oct; 71 ( Pt 10)():2433-41. PubMed ID: 2172457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The virulence-determining genomic BamHI fragment 4 of pseudorabies virus contains genes corresponding to the UL15 (partial), UL18, UL19, UL20, and UL21 genes of herpes simplex virus and a putative origin of replication.
    Klupp BG; Kern H; Mettenleiter TC
    Virology; 1992 Dec; 191(2):900-8. PubMed ID: 1333128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome differences among field isolates and vaccine strains of pseudorabies virus.
    Gielkens AL; Van Oirschot JT; Berns AJ
    J Gen Virol; 1985 Jan; 66 ( Pt 1)():69-82. PubMed ID: 2981962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the genome of equine herpesvirus type 3.
    Sullivan DC; Atherton SS; Staczek J; O'Callaghan DJ
    Virology; 1984 Jan; 132(2):352-67. PubMed ID: 6322418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletions in the genomes of pseudorabies virus vaccine strains and existence of four isomers of the genomes.
    Lomniczi B; Blankenship ML; Ben-Porat T
    J Virol; 1984 Mar; 49(3):970-9. PubMed ID: 6321776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of an origin of DNA replication located at the L terminus of the genome of pseudorabies virus.
    Kupershmidt S; DeMarchi JM; Lu ZQ; Ben-Porat T
    J Virol; 1991 Nov; 65(11):6283-91. PubMed ID: 1656095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of the pseudorabies virus genome after in vivo serial passage.
    Wathen MW; Pirtle EC
    J Gen Virol; 1984 Aug; 65 ( Pt 8)():1401-4. PubMed ID: 6086823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence of the putative origin of replication in the UL region of herpes simplex virus type 1 ANG DNA.
    Gray CP; Kaerner HC
    J Gen Virol; 1984 Dec; 65 ( Pt 12)():2109-19. PubMed ID: 6096489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ability of pseudorabies virus to grow in different hosts is affected by the duplication and translocation of sequences from the left end of the genome to the UL-US junction.
    Reilly LM; Rall G; Lomniczi B; Mettenleiter TC; Kuperschmidt S; Ben-Porat T
    J Virol; 1991 Nov; 65(11):5839-47. PubMed ID: 1656073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of sequence elements containing signals for replication and encapsidation of the reovirus M1 genome segment.
    Zou S; Brown EG
    Virology; 1992 Feb; 186(2):377-88. PubMed ID: 1733095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of the genome of defective interfering pseudorabies virions in the presence or absence of helper functions provided by standard virus.
    Rixon FJ; Feldman LT; Ben-Porat T
    J Gen Virol; 1980 Jan; 46(1):119-38. PubMed ID: 6243339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence of the genome ends and of the junction between the ends in concatemeric DNA of pseudorabies virus.
    Harper L; Demarchi J; Ben-Porat T
    J Virol; 1986 Dec; 60(3):1183-5. PubMed ID: 3023670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.