These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1878 related articles for article (PubMed ID: 30165201)
1. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Ma H; Feng C; Chang J; Wu C Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201 [TBL] [Abstract][Full Text] [Related]
2. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration. Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454 [TBL] [Abstract][Full Text] [Related]
3. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075 [TBL] [Abstract][Full Text] [Related]
4. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration. Ma H; Luo J; Sun Z; Xia L; Shi M; Liu M; Chang J; Wu C Biomaterials; 2016 Dec; 111():138-148. PubMed ID: 27728813 [TBL] [Abstract][Full Text] [Related]
5. Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering. Kelly CN; Miller AT; Hollister SJ; Guldberg RE; Gall K Adv Healthc Mater; 2018 Apr; 7(7):e1701095. PubMed ID: 29280325 [TBL] [Abstract][Full Text] [Related]
6. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional (3D) printed scaffold and material selection for bone repair. Zhang L; Yang G; Johnson BN; Jia X Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607 [TBL] [Abstract][Full Text] [Related]
8. The Dual Effect of 3D-Printed Biological Scaffolds Composed of Diverse Biomaterials in the Treatment of Bone Tumors. Ma Y; Zhang B; Sun H; Liu D; Zhu Y; Zhu Q; Liu X Int J Nanomedicine; 2023; 18():293-305. PubMed ID: 36683596 [TBL] [Abstract][Full Text] [Related]
9. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis. Zhang Y; Xia L; Zhai D; Shi M; Luo Y; Feng C; Fang B; Yin J; Chang J; Wu C Nanoscale; 2015 Dec; 7(45):19207-21. PubMed ID: 26525451 [TBL] [Abstract][Full Text] [Related]
10. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration. Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255 [TBL] [Abstract][Full Text] [Related]
11. Mechanism and application of 3D-printed degradable bioceramic scaffolds for bone repair. Lin H; Zhang L; Zhang Q; Wang Q; Wang X; Yan G Biomater Sci; 2023 Oct; 11(21):7034-7050. PubMed ID: 37782081 [TBL] [Abstract][Full Text] [Related]
12. 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications. Yu H; Xu M; Duan Q; Li Y; Liu Y; Song L; Cheng L; Ying J; Zhao D Biomed Mater; 2024 May; 19(4):. PubMed ID: 38697199 [TBL] [Abstract][Full Text] [Related]
13. Use of 3D-printed polylactic acid/bioceramic composite scaffolds for bone tissue engineering in preclinical in vivo studies: A systematic review. Alonso-Fernández I; Haugen HJ; López-Peña M; González-Cantalapiedra A; Muñoz F Acta Biomater; 2023 Sep; 168():1-21. PubMed ID: 37454707 [TBL] [Abstract][Full Text] [Related]
14. 3D-printed bioceramic scaffolds with Fe Zhuang H; Qin C; Zhang M; Ma J; Zhai D; Ma B; Ma N; Huan Z; Wu C Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34340226 [TBL] [Abstract][Full Text] [Related]
15. 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Wen Y; Xun S; Haoye M; Baichuan S; Peng C; Xuejian L; Kaihong Z; Xuan Y; Jiang P; Shibi L Biomater Sci; 2017 Aug; 5(9):1690-1698. PubMed ID: 28686244 [TBL] [Abstract][Full Text] [Related]
16. 3D printing of sponge spicules-inspired flexible bioceramic-based scaffolds. Yang Z; Xue J; Li T; Zhai D; Yu X; Huan Z; Wu C Biofabrication; 2022 Apr; 14(3):. PubMed ID: 35417888 [TBL] [Abstract][Full Text] [Related]
17. Support-less ceramic 3D printing of bioceramic structures using a hydrogel bath. Raja N; Park H; Gal CW; Sung A; Choi YJ; Yun HS Biofabrication; 2023 Apr; 15(3):. PubMed ID: 36996843 [TBL] [Abstract][Full Text] [Related]
18. Towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds to foster bone regeneration. Metz C; Duda GN; Checa S Acta Biomater; 2020 Jan; 101():117-127. PubMed ID: 31669697 [TBL] [Abstract][Full Text] [Related]
19. 3D printed polymer-mineral composite biomaterials for bone tissue engineering: Fabrication and characterization. Babilotte J; Guduric V; Le Nihouannen D; Naveau A; Fricain JC; Catros S J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2579-2595. PubMed ID: 30848068 [TBL] [Abstract][Full Text] [Related]
20. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Wan Z; Zhang P; Liu Y; Lv L; Zhou Y Acta Biomater; 2020 Jan; 101():26-42. PubMed ID: 31672585 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]