BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30165310)

  • 1. The V protein of human parainfluenza virus type 2 promotes RhoA-induced filamentous actin formation.
    Ohta K; Matsumoto Y; Yumine N; Nishio M
    Virology; 2018 Nov; 524():90-96. PubMed ID: 30165310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profilin2 is required for filamentous actin formation induced by human parainfluenza virus type 2.
    Ohta K; Matsumoto Y; Nishio M
    Virology; 2019 Jul; 533():108-114. PubMed ID: 31150988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Common and unique mechanisms of filamentous actin formation by viruses of the genus Orthorubulavirus.
    Ohta K; Matsumoto Y; Nishio M
    Arch Virol; 2020 Apr; 165(4):799-807. PubMed ID: 32100137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graf1 Controls the Growth of Human Parainfluenza Virus Type 2 through Inactivation of RhoA Signaling.
    Ohta K; Goto H; Matsumoto Y; Yumine N; Tsurudome M; Nishio M
    J Virol; 2016 Oct; 90(20):9394-405. PubMed ID: 27512058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human parainfluenza virus type 2 V protein inhibits induction of tetherin.
    Ohta K; Matsumoto Y; Yumine N; Nishio M
    Med Microbiol Immunol; 2017 Aug; 206(4):311-318. PubMed ID: 28455649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of human parainfluenza virus type 2 (HPIV-2) V protein amino acid residues that reduce binding of V to MDA5 and attenuate HPIV-2 replication in nonhuman primates.
    Schaap-Nutt A; Higgins C; Amaro-Carambot E; Nolan SM; D'Angelo C; Murphy BR; Collins PL; Schmidt AC
    J Virol; 2011 Apr; 85(8):4007-19. PubMed ID: 21289116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human parainfluenza virus type 2 V protein inhibits and antagonizes tetherin.
    Ohta K; Goto H; Yumine N; Nishio M
    J Gen Virol; 2016 Mar; 97(3):561-570. PubMed ID: 26675672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Parainfluenza Virus Type 2 V Protein Modulates Iron Homeostasis.
    Ohta K; Saka N; Nishio M
    J Virol; 2021 Feb; 95(6):. PubMed ID: 33408172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rab27a facilitates human parainfluenza virus type 2 growth by promoting cell surface transport of envelope proteins.
    Ohta K; Matsumoto Y; Nishio M
    Med Microbiol Immunol; 2018 Apr; 207(2):141-150. PubMed ID: 29374787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filamentous particle formation by human parainfluenza virus type 2.
    Yao Q; Compans RW
    J Gen Virol; 2000 May; 81(Pt 5):1305-12. PubMed ID: 10769073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The conserved carboxyl terminus of human parainfluenza virus type 2 V protein plays an important role in virus growth.
    Nishio M; Tsurudome M; Ishihara H; Ito M; Ito Y
    Virology; 2007 May; 362(1):85-98. PubMed ID: 17250865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycyrrhizin inhibits human parainfluenza virus type 2 replication by the inhibition of genome RNA, mRNA and protein syntheses.
    Sakai-Sugino K; Uematsu J; Kamada M; Taniguchi H; Suzuki S; Yoshimi Y; Kihira S; Yamamoto H; Kawano M; Tsurudome M; O'Brien M; Itoh M; Komada H
    Drug Discov Ther; 2017 Nov; 11(5):246-252. PubMed ID: 29070744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treponema denticola Msp-deduced peptide conjugate, P34BSA, promotes RhoA-dependent actin stress fiber formation independent of its internalization by fibroblasts.
    Amin M; Magnusson KE; Kapus A; Glogauer M; Ellen RP
    Cell Motil Cytoskeleton; 2008 May; 65(5):406-21. PubMed ID: 18330900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudorabies virus US3 triggers RhoA phosphorylation to reorganize the actin cytoskeleton.
    Jacob T; Broeke CVD; Waesberghe CV; Troys LV; Favoreel HW
    J Gen Virol; 2015 Aug; 96(8):2328-2335. PubMed ID: 25883194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An anti-fusion regulatory protein-1 monoclonal antibody suppresses human parainfluenza virus type 2-induced cell fusion.
    Okamoto K; Tsurudome M; Ohgimoto S; Kawano M; Nishio M; Komada H; Ito M; Sakakura Y; Ito Y
    J Gen Virol; 1997 Jan; 78 ( Pt 1)():83-9. PubMed ID: 9010289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. p116Rip is a novel filamentous actin-binding protein.
    Mulder J; Poland M; Gebbink MF; Calafat J; Moolenaar WH; Kranenburg O
    J Biol Chem; 2003 Jul; 278(29):27216-23. PubMed ID: 12732640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of naturally occurring parainfluenza virus type 2 (hPIV-2) variants.
    Terrier O; Cartet G; Ferraris O; Morfin F; Thouvenot D; Hong SS; Lina B
    J Clin Virol; 2008 Sep; 43(1):86-92. PubMed ID: 18579437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Expression of F-actin and RhoA in experimental hypoxic-ischemic white matter damage in premature SD rats].
    Li JH; Yao YJ; Shi J; Li DY
    Zhonghua Er Ke Za Zhi; 2007 Oct; 45(10):769-72. PubMed ID: 18211763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opposing FlnA and FlnB interactions regulate RhoA activation in guiding dynamic actin stress fiber formation and cell spreading.
    Hu J; Lu J; Goyal A; Wong T; Lian G; Zhang J; Hecht JL; Feng Y; Sheen VL
    Hum Mol Genet; 2017 Apr; 26(7):1294-1304. PubMed ID: 28175289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential involvement of the integrin-linked kinase (ILK) in RhoA-dependent rearrangement of F-actin fibers and induction of connective tissue growth factor (CTGF).
    Graness A; Giehl K; Goppelt-Struebe M
    Cell Signal; 2006 Apr; 18(4):433-40. PubMed ID: 15970428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.