These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 30165331)

  • 21. Oxygen reactivity in flavoenzymes: context matters.
    McDonald CA; Fagan RL; Collard F; Monnier VM; Palfey BA
    J Am Chem Soc; 2011 Oct; 133(42):16809-11. PubMed ID: 21958058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase.
    Golden E; Yu LJ; Meilleur F; Blakeley MP; Duff AP; Karton A; Vrielink A
    Sci Rep; 2017 Jan; 7():40517. PubMed ID: 28098177
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flavin-N5-oxide intermediates in dibenzothiophene, uracil, and hexachlorobenzene catabolism.
    Adak S; Begley TP
    Methods Enzymol; 2019; 620():455-468. PubMed ID: 31072497
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What makes the difference between a cryptochrome and DNA photolyase? A spectroelectrochemical comparison of the flavin redox transitions.
    Balland V; Byrdin M; Eker AP; Ahmad M; Brettel K
    J Am Chem Soc; 2009 Jan; 131(2):426-7. PubMed ID: 19140781
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flavin-N5 Covalent Intermediate in a Nonredox Dehalogenation Reaction Catalyzed by an Atypical Flavoenzyme.
    Dai Y; Kizjakina K; Campbell AC; Korasick DA; Tanner JJ; Sobrado P
    Chembiochem; 2018 Jan; 19(1):53-57. PubMed ID: 29116682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NMR spectroscopy on flavins and flavoproteins.
    Müller F
    Methods Mol Biol; 2014; 1146():229-306. PubMed ID: 24764095
    [TBL] [Abstract][Full Text] [Related]  

  • 27. What's in a covalent bond? On the role and formation of covalently bound flavin cofactors.
    Heuts DP; Scrutton NS; McIntire WS; Fraaije MW
    FEBS J; 2009 Jul; 276(13):3405-27. PubMed ID: 19438712
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The diverse roles of flavin coenzymes--nature's most versatile thespians.
    Mansoorabadi SO; Thibodeaux CJ; Liu HW
    J Org Chem; 2007 Aug; 72(17):6329-42. PubMed ID: 17580897
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New frontiers in flavin-dependent monooxygenases.
    Reis RAG; Li H; Johnson M; Sobrado P
    Arch Biochem Biophys; 2021 Mar; 699():108765. PubMed ID: 33460580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and chemical trapping of flavin-oxide intermediates reveals substrate-directed reaction multiplicity.
    Lin KH; Lyu SY; Yeh HW; Li YS; Hsu NS; Huang CM; Wang YL; Shih HW; Wang ZC; Wu CJ; Li TL
    Protein Sci; 2020 Jul; 29(7):1655-1666. PubMed ID: 32362037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relationship between charge-transfer interactions, redox potentials, and catalysis for different forms of the flavoprotein component of p-cresol methylhydroxylase.
    Efimov I; McIntire WS
    J Am Chem Soc; 2005 Jan; 127(2):732-41. PubMed ID: 15643899
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistic studies of cyclohexanone monooxygenase: chemical properties of intermediates involved in catalysis.
    Sheng D; Ballou DP; Massey V
    Biochemistry; 2001 Sep; 40(37):11156-67. PubMed ID: 11551214
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reaction of reduced flavins and flavoproteins with diphenyliodonium chloride.
    Chakraborty S; Massey V
    J Biol Chem; 2002 Nov; 277(44):41507-16. PubMed ID: 12186866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic association of flavin cofactors to regulate flavoprotein function.
    Schnerwitzki D; Vabulas RM
    IUBMB Life; 2022 Jul; 74(7):645-654. PubMed ID: 35015339
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resonance Raman spectroscopy.
    Li J; Kitagawa T
    Methods Mol Biol; 2014; 1146():377-400. PubMed ID: 24764099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rationally engineered flavin-dependent oxidase reveals steric control of dioxygen reduction.
    Zafred D; Steiner B; Teufelberger AR; Hromic A; Karplus PA; Schofield CJ; Wallner S; Macheroux P
    FEBS J; 2015 Aug; 282(16):3060-74. PubMed ID: 25619330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flavin metamorphosis: cofactor transformation through prenylation.
    Leys D
    Curr Opin Chem Biol; 2018 Dec; 47():117-125. PubMed ID: 30326424
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iron-sulfur flavoenzymes: the added value of making the most ancient redox cofactors and the versatile flavins work together.
    Vanoni MA
    Open Biol; 2021 May; 11(5):210010. PubMed ID: 33947244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A study of the spectral and redox properties and covalent flavinylation of the flavoprotein component of p-cresol methylhydroxylase reconstituted with FAD analogues.
    Efimov I; McIntire WS
    Biochemistry; 2004 Aug; 43(32):10532-46. PubMed ID: 15301551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insight into covalent flavinylation and catalysis from redox, spectral, and kinetic analyses of the R474K mutant of the flavoprotein subunit of p-cresol methylhydroxylase.
    Efimov I; Cronin CN; Bergmann DJ; Kuusk V; McIntire WS
    Biochemistry; 2004 May; 43(20):6138-48. PubMed ID: 15147198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.