BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 30165607)

  • 1. miES: predicting the essentiality of miRNAs with machine learning and sequence features.
    Song F; Cui C; Gao L; Cui Q
    Bioinformatics; 2019 Mar; 35(6):1053-1054. PubMed ID: 30165607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PESM: predicting the essentiality of miRNAs based on gradient boosting machines and sequences.
    Yan C; Wu FX; Wang J; Duan G
    BMC Bioinformatics; 2020 Mar; 21(1):111. PubMed ID: 32183740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. miRLocator: A Python Implementation and Web Server for Predicting miRNAs from Pre-miRNA Sequences.
    Zhang T; Ju L; Zhai J; Song Y; Song J; Ma C
    Methods Mol Biol; 2019; 1932():89-97. PubMed ID: 30701493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. miRNACancerMAP: an integrative web server inferring miRNA regulation network for cancer.
    Tong Y; Ru B; Zhang J
    Bioinformatics; 2018 Sep; 34(18):3211-3213. PubMed ID: 29897412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepMirTar: a deep-learning approach for predicting human miRNA targets.
    Wen M; Cong P; Zhang Z; Lu H; Li T
    Bioinformatics; 2018 Nov; 34(22):3781-3787. PubMed ID: 29868708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AEMDA: inferring miRNA-disease associations based on deep autoencoder.
    Ji C; Gao Z; Ma X; Wu Q; Ni J; Zheng C
    Bioinformatics; 2021 Apr; 37(1):66-72. PubMed ID: 32726399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. miRe2e: a full end-to-end deep model based on transformers for prediction of pre-miRNAs.
    Raad J; Bugnon LA; Milone DH; Stegmayer G
    Bioinformatics; 2022 Feb; 38(5):1191-1197. PubMed ID: 34875006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. wTAM: a web server for annotation of weighted human microRNAs.
    Cui C; Fan R; Zhou Y; Cui Q
    Bioinform Adv; 2022; 2(1):vbab040. PubMed ID: 36699401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. miRLocator: Machine Learning-Based Prediction of Mature MicroRNAs within Plant Pre-miRNA Sequences.
    Cui H; Zhai J; Ma C
    PLoS One; 2015; 10(11):e0142753. PubMed ID: 26558614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of potential disease-associated microRNAs using structural perturbation method.
    Zeng X; Liu L; Lü L; Zou Q
    Bioinformatics; 2018 Jul; 34(14):2425-2432. PubMed ID: 29490018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. miRTRS: A Recommendation Algorithm for Predicting miRNA Targets.
    Jiang H; Wang J; Li M; Lan W; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):1032-1041. PubMed ID: 30281478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome wide predictions of miRNA regulation by transcription factors.
    Ruffalo M; Bar-Joseph Z
    Bioinformatics; 2016 Sep; 32(17):i746-i754. PubMed ID: 27587697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complexity measures of the mature miRNA for improving pre-miRNAs prediction.
    Raad J; Stegmayer G; Milone DH
    Bioinformatics; 2020 Apr; 36(8):2319-2327. PubMed ID: 31860057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting novel microRNA: a comprehensive comparison of machine learning approaches.
    Stegmayer G; Di Persia LE; Rubiolo M; Gerard M; Pividori M; Yones C; Bugnon LA; Rodriguez T; Raad J; Milone DH
    Brief Bioinform; 2019 Sep; 20(5):1607-1620. PubMed ID: 29800232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive boosting-based computational model for predicting potential miRNA-disease associations.
    Zhao Y; Chen X; Yin J
    Bioinformatics; 2019 Nov; 35(22):4730-4738. PubMed ID: 31038664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A learning-based framework for miRNA-disease association identification using neural networks.
    Peng J; Hui W; Li Q; Chen B; Hao J; Jiang Q; Shang X; Wei Z
    Bioinformatics; 2019 Nov; 35(21):4364-4371. PubMed ID: 30977780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide pre-miRNA discovery from few labeled examples.
    Yones C; Stegmayer G; Milone DH
    Bioinformatics; 2018 Feb; 34(4):541-549. PubMed ID: 29028911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying cancer-related microRNAs based on gene expression data.
    Zhao XM; Liu KQ; Zhu G; He F; Duval B; Richer JM; Huang DS; Jiang CJ; Hao JK; Chen L
    Bioinformatics; 2015 Apr; 31(8):1226-34. PubMed ID: 25505085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PmliPred: a method based on hybrid model and fuzzy decision for plant miRNA-lncRNA interaction prediction.
    Kang Q; Meng J; Cui J; Luan Y; Chen M
    Bioinformatics; 2020 May; 36(10):2986-2992. PubMed ID: 32087005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. miRFam: an effective automatic miRNA classification method based on n-grams and a multiclass SVM.
    Ding J; Zhou S; Guan J
    BMC Bioinformatics; 2011 May; 12():216. PubMed ID: 21619662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.