These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 30166128)
1. Genomic and metatranscriptomic analyses of Weissella koreensis reveal its metabolic and fermentative features during kimchi fermentation. Jeong SE; Chun BH; Kim KH; Park D; Roh SW; Lee SH; Jeon CO Food Microbiol; 2018 Dec; 76():1-10. PubMed ID: 30166128 [TBL] [Abstract][Full Text] [Related]
2. Genomic and metabolic features of Lactobacillus sakei as revealed by its pan-genome and the metatranscriptome of kimchi fermentation. Kim KH; Chun BH; Baek JH; Roh SW; Lee SH; Jeon CO Food Microbiol; 2020 Apr; 86():103341. PubMed ID: 31703875 [TBL] [Abstract][Full Text] [Related]
3. Pan-genomic and transcriptomic analyses of Leuconostoc mesenteroides provide insights into its genomic and metabolic features and roles in kimchi fermentation. Chun BH; Kim KH; Jeon HH; Lee SH; Jeon CO Sci Rep; 2017 Sep; 7(1):11504. PubMed ID: 28912444 [TBL] [Abstract][Full Text] [Related]
4. Metatranscriptomic analysis of lactic acid bacterial gene expression during kimchi fermentation. Jung JY; Lee SH; Jin HM; Hahn Y; Madsen EL; Jeon CO Int J Food Microbiol; 2013 May; 163(2-3):171-9. PubMed ID: 23558201 [TBL] [Abstract][Full Text] [Related]
5. The influence of red pepper powder on the density of Weissella koreensis during kimchi fermentation. Kang BK; Cho MS; Ahn TY; Lee ES; Park DS Sci Rep; 2015 Oct; 5():15445. PubMed ID: 26497926 [TBL] [Abstract][Full Text] [Related]
6. Complete genome sequence of Weissella koreensis KACC 15510, isolated from kimchi. Lee SH; Jung JY; Lee SH; Jeon CO J Bacteriol; 2011 Oct; 193(19):5534. PubMed ID: 21914863 [TBL] [Abstract][Full Text] [Related]
7. Microbial niches in raw ingredients determine microbial community assembly during kimchi fermentation. Song HS; Whon TW; Kim J; Lee SH; Kim JY; Kim YB; Choi HJ; Rhee JK; Roh SW Food Chem; 2020 Jul; 318():126481. PubMed ID: 32126467 [TBL] [Abstract][Full Text] [Related]
8. Characterization of Mun SY; Chang HC Microorganisms; 2020 Jul; 8(8):. PubMed ID: 32751267 [TBL] [Abstract][Full Text] [Related]
9. Effect of Bacteriophages on Viability and Growth of Co-cultivated Kong SJ; Park JH J Microbiol Biotechnol; 2019 Apr; 29(4):558-561. PubMed ID: 30954033 [TBL] [Abstract][Full Text] [Related]
10. Microbial succession and metabolite changes during long-term storage of Kimchi. Jeong SH; Lee SH; Jung JY; Choi EJ; Jeon CO J Food Sci; 2013 May; 78(5):M763-9. PubMed ID: 23550842 [TBL] [Abstract][Full Text] [Related]
11. Draft genome sequence of Weissella koreensis KCTC 3621T. Lee JH; Bae JW; Chun J J Bacteriol; 2012 Oct; 194(20):5711-2. PubMed ID: 23012287 [TBL] [Abstract][Full Text] [Related]
12. Evidence for xylooligosaccharide utilization in Weissella strains isolated from Indian fermented foods and vegetables. Patel A; Falck P; Shah N; Immerzeel P; Adlercreutz P; Stålbrand H; Prajapati JB; Holst O; Nordberg Karlsson E FEMS Microbiol Lett; 2013 Sep; 346(1):20-8. PubMed ID: 23738850 [TBL] [Abstract][Full Text] [Related]
13. Role of jeotgal, a Korean traditional fermented fish sauce, in microbial dynamics and metabolite profiles during kimchi fermentation. Jung MY; Kim TW; Lee C; Kim JY; Song HS; Kim YB; Ahn SW; Kim JS; Roh SW; Lee SH Food Chem; 2018 Nov; 265():135-143. PubMed ID: 29884364 [TBL] [Abstract][Full Text] [Related]
14. Isolation and characterization of lactic acid bacteria strains with ornithine producing capacity from natural sea salt. Yu JJ; Oh SH J Microbiol; 2010 Aug; 48(4):467-72. PubMed ID: 20799088 [TBL] [Abstract][Full Text] [Related]
15. Unraveling microbial fermentation features in kimchi: from classical to meta-omics approaches. Lee SH; Whon TW; Roh SW; Jeon CO Appl Microbiol Biotechnol; 2020 Sep; 104(18):7731-7744. PubMed ID: 32749526 [TBL] [Abstract][Full Text] [Related]
16. Role of combinated lactic acid bacteria in bacterial, viral, and metabolite dynamics during fermentation of vegetable food, kimchi. Jung MJ; Kim J; Lee SH; Whon TW; Sung H; Bae JW; Choi YE; Roh SW Food Res Int; 2022 Jul; 157():111261. PubMed ID: 35761573 [TBL] [Abstract][Full Text] [Related]
17. Weissella kimchii sp. nov., a novel lactic acid bacterium from kimchi. Choi HJ; Cheigh CI; Kim SB; Lee JC; Lee DW; Choi SW; Park JM; Pyun YR Int J Syst Evol Microbiol; 2002 Mar; 52(Pt 2):507-511. PubMed ID: 11931163 [TBL] [Abstract][Full Text] [Related]
18. Kimchi microflora: history, current status, and perspectives for industrial kimchi production. Jung JY; Lee SH; Jeon CO Appl Microbiol Biotechnol; 2014 Mar; 98(6):2385-93. PubMed ID: 24419800 [TBL] [Abstract][Full Text] [Related]
19. Genomic and metabolic features of Tetragenococcus halophilus as revealed by pan-genome and transcriptome analyses. Chun BH; Han DM; Kim KH; Jeong SE; Park D; Jeon CO Food Microbiol; 2019 Oct; 83():36-47. PubMed ID: 31202417 [TBL] [Abstract][Full Text] [Related]
20. A proteomic approach for rapid identification of Weissella species isolated from Korean fermented foods on MALDI-TOF MS supplemented with an in-house database. Kim E; Cho Y; Lee Y; Han SK; Kim CG; Choo DW; Kim YR; Kim HY Int J Food Microbiol; 2017 Feb; 243():9-15. PubMed ID: 27936381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]