These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 30166147)

  • 41. Detection of Aspergillus flavus in stored peanuts using real-time PCR and the expression of aflatoxin genes in toxigenic and atoxigenic A. flavus isolates.
    Mahmoud MA
    Foodborne Pathog Dis; 2015 Apr; 12(4):289-96. PubMed ID: 25621617
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Temporal monitoring of the nor-1 (aflD) gene of Aspergillus flavus in relation to aflatoxin B₁ production during storage of peanuts under different water activity levels.
    Abdel-Hadi A; Carter D; Magan N
    J Appl Microbiol; 2010 Dec; 109(6):1914-22. PubMed ID: 20735510
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of water activity on the thermal inactivation kinetics of Salmonella in milk powders.
    Wei X; Lau SK; Chaves BD; Danao MC; Agarwal S; Subbiah J
    J Dairy Sci; 2020 Aug; 103(8):6904-6917. PubMed ID: 32475668
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Utilization of waste fruit-peels to inhibit aflatoxins synthesis by Aspergillus flavus: a biotreatment of rice for safer storage.
    Naseer R; Sultana B; Khan MZ; Naseer D; Nigam P
    Bioresour Technol; 2014 Nov; 172():423-428. PubMed ID: 25270080
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of temperature and water activity on gene expression and aflatoxin biosynthesis in Aspergillus flavus on almond medium.
    Gallo A; Solfrizzo M; Epifani F; Panzarini G; Perrone G
    Int J Food Microbiol; 2016 Jan; 217():162-9. PubMed ID: 26540623
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comprehensive comparison of multiple quantitative near-infrared spectroscopy models for Aspergillus flavus contamination detection in peanut.
    Li Z; Tang X; Shen Z; Yang K; Zhao L; Li Y
    J Sci Food Agric; 2019 Oct; 99(13):5671-5679. PubMed ID: 31150109
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Study of the genetic diversity of the aflatoxin biosynthesis cluster in Aspergillus section Flavi using insertion/deletion markers in peanut seeds from Georgia, USA.
    Faustinelli PC; Palencia ER; Sobolev VS; Horn BW; Sheppard HT; Lamb MC; Wang XM; Scheffler BE; Martinez Castillo J; Arias RS
    Mycologia; 2017; 109(2):200-209. PubMed ID: 28506119
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of water activity and storage temperature on the growth of Aspergillus flavus in medicinal herbs.
    Kulshrestha R; Gupta CP; Shukla G; Kundu MG; Bhatnagar SP; Katiyar CK
    Planta Med; 2008 Aug; 74(10):1308-15. PubMed ID: 18553273
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Increased susceptibility and reduced phytoalexin accumulation in drought-stressed peanut kernels challenged with Aspergillus flavus.
    Wotton HR; Strange RN
    Appl Environ Microbiol; 1987 Feb; 53(2):270-3. PubMed ID: 3105455
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interrelationship of kernel water activity, soil temperature, maturity, and phytoalexin production in preharvest aflatoxin contamination of drought-stressed peanuts.
    Dorner JW; Cole RJ; Sanders TH; Blankenship PD
    Mycopathologia; 1989 Feb; 105(2):117-28. PubMed ID: 2501686
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modification of a Predictive Model To Include the Influence of Fat Content on Salmonella Inactivation in Low-Water-Activity Foods.
    Trimble LM; Frank JF; Schaffner DW
    J Food Prot; 2020 May; 83(5):801-815. PubMed ID: 32318726
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Long-term kinetics of Salmonella Typhimurium ATCC 14028 survival on peanuts and peanut confectionery products.
    Nascimento MS; Carminati JA; Morishita KN; Amorim Neto DP; Pinheiro HP; Maia RP
    PLoS One; 2018; 13(2):e0192457. PubMed ID: 29401480
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of population structure of Aspergillus flavus from peanut based on vegetative compatibility, geographic origin, mycotoxin and sclerotia production.
    Pildain MB; Vaamonde G; Cabral D
    Int J Food Microbiol; 2004 May; 93(1):31-40. PubMed ID: 15135580
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [A SCAR marker for resistance to Aspergillus flavus in peanut (Arachis hypogaea L.)].
    Lei Y; Liao BS; Wang SY; Zhang YB; Li D; Jiang HF
    Yi Chuan; 2006 Sep; 28(9):1107-11. PubMed ID: 16963420
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aflatoxin production in six peanut (Arachis hypogaea L.) genotypes infected with Aspergillus flavus and Aspergillus parasiticus, isolated from peanut production areas of Cordoba, Argentina.
    Asis R; Barrionuevo DL; Giorda LM; Nores ML; Aldao MA
    J Agric Food Chem; 2005 Nov; 53(23):9274-80. PubMed ID: 16277433
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Accumulation of aflatoxins on wheat grain inoculated by Aspergillus flavus NRRL 2999 and their distribution in grinding products].
    Lvova LS; Sosedov NI; Shatilova TI; Shulgina AP
    Prikl Biokhim Mikrobiol; 1975; 11(4):559-64. PubMed ID: 813203
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of sub-lethal antioxidant doses, water potential and temperature on growth, sclerotia, aflatoxins and aflD (=nor-1) expression by Aspergillus flavus RCP08108.
    Passone MA; Rosso LC; Etcheverry M
    Microbiol Res; 2012 Sep; 167(8):470-7. PubMed ID: 22227105
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of potential biocontrol agent for aflatoxin in Argentinean peanuts.
    Alaniz Zanon MS; Chiotta ML; Giaj-Merlera G; Barros G; Chulze S
    Int J Food Microbiol; 2013 Apr; 162(3):220-5. PubMed ID: 23454811
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Formulation of maize- and peanut-based semi-synthetic growth media for the ecophysiological studies of aflatoxigenic Aspergillus flavus in maize and peanut agro-ecosystems.
    Yazid SNE; Thanggavelu H; Mahror N; Selamat J; Samsudin NIP
    Int J Food Microbiol; 2018 Oct; 282():57-65. PubMed ID: 29913332
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of calcium propionate and water activity on growth and aflatoxins production by Aspergillus flavus.
    Alam S; Shah HU; Magan N
    J Food Sci; 2010 Mar; 75(2):M61-4. PubMed ID: 20492242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.