BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

828 related articles for article (PubMed ID: 30166203)

  • 1. CO
    Alabi WO
    Environ Pollut; 2018 Nov; 242(Pt B):1566-1576. PubMed ID: 30166203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of greenhouse gases through dry reforming: screening of nickel-based bimetallic catalysts and kinetic studies.
    Fan MS; Abdullah AZ; Bhatia S
    ChemSusChem; 2011 Nov; 4(11):1643-53. PubMed ID: 22191096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative synthesis and physicochemical characterizations of Ni/Al2O3-MgO nanocatalyst via sequential impregnation and sol-gel methods used for CO2 reforming of methane.
    Aghamohammadi S; Haghighi M; Karimipour S
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4872-82. PubMed ID: 23901507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on methane conversion to syngas over nano Pt-CeO2-ZrO2/MgO catalysts: Structure and catalytic behavior of catalysts prepared by using ion exchange resin method.
    Yang M; Guo H; Li Y; Wang W; Zhou L
    J Environ Sci (China); 2011 Jun; 23 Suppl():S53-8. PubMed ID: 25084594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of dry (CO2) reforming of methane over noble metal catalysts.
    Pakhare D; Spivey J
    Chem Soc Rev; 2014 Nov; 43(22):7813-37. PubMed ID: 24504089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of Ni-based metal monolithic catalysts and a study of their performance in methane reforming with CO2.
    Wang K; Li X; Ji S; Huang B; Li C
    ChemSusChem; 2008; 1(6):527-33. PubMed ID: 18702151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO2 reforming of CH4 over CeO2-doped Ni/Al2O3 nanocatalyst treated by non-thermal plasma.
    Rahemi N; Haghighi M; Babaluo AA; Jafari MF; Estifaee P
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4896-908. PubMed ID: 23901509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ni-Co bimetallic catalysts on coconut shell activated carbon prepared using solid-phase method for highly efficient dry reforming of methane.
    Li L; Chen J; Zhang Y; Sun J; Zou G
    Environ Sci Pollut Res Int; 2022 May; 29(25):37685-37699. PubMed ID: 35066826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts.
    Park HJ; Park SH; Sohn JM; Park J; Jeon JK; Kim SS; Park YK
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S101-3. PubMed ID: 19369069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.
    Han JW; Kim C; Park JS; Lee H
    ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane.
    Al-Doghachi FA; Islam A; Zainal Z; Saiman MI; Embong Z; Taufiq-Yap YH
    PLoS One; 2016; 11(1):e0145862. PubMed ID: 26745623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the presence of ruthenium on the activity and stability of Co-Mg-Al-based catalysts in CO
    Gennequin C; Hany S; Tidahy HL; Aouad S; Estephane J; Aboukaïs A; Abi-Aad E
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22744-22760. PubMed ID: 27562810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation on the relationship between physicochemical characteristics of alumina-supported cobalt catalyst and its performance in dry reforming of methane.
    Khairudin NF; Mohammadi M; Mohamed AR
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):29157-29176. PubMed ID: 33550559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass.
    Li D; Tamura M; Nakagawa Y; Tomishige K
    Bioresour Technol; 2015 Feb; 178():53-64. PubMed ID: 25455089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Ni:SiO2 nanocomposite to control the carbon deposition on the carbon dioxide reforming of methane.
    Carreño NL; Leite ER; Longo E; Lisboa-Filho PN; Valentini A; Probst LF; Schreiner WH
    J Nanosci Nanotechnol; 2002 Oct; 2(5):491-4. PubMed ID: 12908285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of nickel supported catalysts for the upgrading of brown peat derived gasification products.
    Sutton D; Kelleher B; Doyle A; Ross JR
    Bioresour Technol; 2001 Nov; 80(2):111-6. PubMed ID: 11563700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and catalytic properties of ZrO2-Al2O3 composite oxide supported nickel catalysts for methane reforming with carbon dioxide.
    Hao ZP; Hu C; Jiang Z; Lu GQ
    J Environ Sci (China); 2004; 16(2):316-20. PubMed ID: 15137662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile use of coal combustion fly ash (CCFA) as Ni-Re bimetallic catalyst support for high-performance CO
    Dong X; Jin B; Cao S; Meng F; Chen T; Ding Q; Tong C
    Waste Manag; 2020 Apr; 107():244-251. PubMed ID: 32320937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in Synthesis of Highly Active and Stable Nickel-Based Catalysts for Carbon Dioxide Reforming of Methane.
    Kawi S; Kathiraser Y; Ni J; Oemar U; Li Z; Saw ET
    ChemSusChem; 2015 Nov; 8(21):3556-75. PubMed ID: 26440576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.