These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30166461)

  • 41. Conformational selection of the intrinsically disordered plant stress protein COR15A in response to solution osmolarity - an X-ray and light scattering study.
    Shou K; Bremer A; Rindfleisch T; Knox-Brown P; Hirai M; Rekas A; Garvey CJ; Hincha DK; Stadler AM; Thalhammer A
    Phys Chem Chem Phys; 2019 Aug; 21(34):18727-18740. PubMed ID: 31424463
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fundamental Challenges and Outlook in Simulating Liquid-Liquid Phase Separation of Intrinsically Disordered Proteins.
    Bari KJ; Prakashchand DD
    J Phys Chem Lett; 2021 Feb; 12(6):1644-1656. PubMed ID: 33555894
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluating Models of Varying Complexity of Crowded Intrinsically Disordered Protein Solutions Against SAXS.
    Fagerberg E; Lenton S; Skepö M
    J Chem Theory Comput; 2019 Dec; 15(12):6968-6983. PubMed ID: 31714774
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Small-angle scattering studies of intrinsically disordered proteins and their complexes.
    Cordeiro TN; Herranz-Trillo F; Urbanek A; Estaña A; Cortés J; Sibille N; Bernadó P
    Curr Opin Struct Biol; 2017 Feb; 42():15-23. PubMed ID: 27794210
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamical Oligomerisation of Histidine Rich Intrinsically Disordered ProteinS Is Regulated through Zinc-Histidine Interactions.
    Cragnell C; Staby L; Lenton S; Kragelund BB; Skepö M
    Biomolecules; 2019 Apr; 9(5):. PubMed ID: 31052346
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Incorporation of D
    Zheng W; Du Z; Ko SB; Wickramasinghe NP; Yang S
    J Phys Chem B; 2022 Nov; 126(45):9176-9186. PubMed ID: 36331868
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Small angle neutron scattering for the structural study of intrinsically disordered proteins in solution: a practical guide.
    Gabel F
    Methods Mol Biol; 2012; 896():123-35. PubMed ID: 22821521
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High resolution ensemble description of metamorphic and intrinsically disordered proteins using an efficient hybrid parallel tempering scheme.
    Appadurai R; Nagesh J; Srivastava A
    Nat Commun; 2021 Feb; 12(1):958. PubMed ID: 33574233
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural Characterization of N-WASP Domain V Using MD Simulations with NMR and SAXS Data.
    Chan-Yao-Chong M; Deville C; Pinet L; van Heijenoort C; Durand D; Ha-Duong T
    Biophys J; 2019 Apr; 116(7):1216-1227. PubMed ID: 30878202
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Temperature Dependence of Intrinsically Disordered Proteins in Simulations: What are We Missing?
    Jephthah S; Staby L; Kragelund BB; Skepö M
    J Chem Theory Comput; 2019 Apr; 15(4):2672-2683. PubMed ID: 30865820
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Utilizing Coarse-Grained Modeling and Monte Carlo Simulations to Evaluate the Conformational Ensemble of Intrinsically Disordered Proteins and Regions.
    Cragnell C; Rieloff E; Skepö M
    J Mol Biol; 2018 Aug; 430(16):2478-2492. PubMed ID: 29573987
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conjugation of NMR and SAXS for flexible and multidomain protein structure determination: From sample preparation to model refinement.
    Rodríguez-Zamora P
    Prog Biophys Mol Biol; 2020 Jan; 150():140-144. PubMed ID: 31445067
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hierarchical Ensembles of Intrinsically Disordered Proteins at Atomic Resolution in Molecular Dynamics Simulations.
    Pietrek LM; Stelzl LS; Hummer G
    J Chem Theory Comput; 2020 Jan; 16(1):725-737. PubMed ID: 31809054
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ensemble description of the intrinsically disordered N-terminal domain of the Nipah virus P/V protein from combined NMR and SAXS.
    Schiavina M; Salladini E; Murrali MG; Tria G; Felli IC; Pierattelli R; Longhi S
    Sci Rep; 2020 Nov; 10(1):19574. PubMed ID: 33177626
    [TBL] [Abstract][Full Text] [Related]  

  • 55. On-line determination by small angle X-ray scattering of the shape of hen egg white lysozyme immediately following elution from a hydrophobic interaction chromatography column.
    Kulsing C; Komaromy AZ; Boysen RI; Hearn MT
    Analyst; 2016 Oct; 141(20):5810-5814. PubMed ID: 27500439
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Small-angle X-ray scattering experiments of monodisperse intrinsically disordered protein samples close to the solubility limit.
    Martin EW; Hopkins JB; Mittag T
    Methods Enzymol; 2021; 646():185-222. PubMed ID: 33453925
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Insights into the conformations and dynamics of intrinsically disordered proteins using single-molecule fluorescence.
    Gomes GN; Gradinaru CC
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt B):1696-1706. PubMed ID: 28625737
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Random coil negative control reproduces the discrepancy between scattering and FRET measurements of denatured protein dimensions.
    Watkins HM; Simon AJ; Sosnick TR; Lipman EA; Hjelm RP; Plaxco KW
    Proc Natl Acad Sci U S A; 2015 May; 112(21):6631-6. PubMed ID: 25964362
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Determining the Locations of Ions and Water around DNA from X-Ray Scattering Measurements.
    Meisburger SP; Pabit SA; Pollack L
    Biophys J; 2015 Jun; 108(12):2886-95. PubMed ID: 26083928
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of biostructural changes, dynamics, and interactions - Small-angle X-ray scattering to the rescue.
    Vestergaard B
    Arch Biochem Biophys; 2016 Jul; 602():69-79. PubMed ID: 26945933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.