BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 30166490)

  • 1. Increase in crop losses to insect pests in a warming climate.
    Deutsch CA; Tewksbury JJ; Tigchelaar M; Battisti DS; Merrill SC; Huey RB; Naylor RL
    Science; 2018 Aug; 361(6405):916-919. PubMed ID: 30166490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How does climate change affect potential yields of four staple grain crops worldwide by 2030?
    Cai C; Lv L; Wei S; Zhang L; Cao W
    PLoS One; 2024; 19(5):e0303857. PubMed ID: 38820516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Projective analysis of staple food crop productivity in adaptation to future climate change in China.
    Zhang Q; Zhang W; Li T; Sun W; Yu Y; Wang G
    Int J Biometeorol; 2017 Aug; 61(8):1445-1460. PubMed ID: 28247124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of crop yield growth to global temperature and socioeconomic changes.
    Iizumi T; Furuya J; Shen Z; Kim W; Okada M; Fujimori S; Hasegawa T; Nishimori M
    Sci Rep; 2017 Aug; 7(1):7800. PubMed ID: 28798370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses of plant biomass and yield component in rice, wheat, and maize to climatic warming: a meta-analysis.
    Liu X; Ma Q; Yu H; Li Y; Zhou L; He Q; Xu Z; Zhou G
    Planta; 2020 Oct; 252(5):90. PubMed ID: 33083898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The central trend in crop yields under climate change in China: A systematic review.
    Liu Y; Li N; Zhang Z; Huang C; Chen X; Wang F
    Sci Total Environ; 2020 Feb; 704():135355. PubMed ID: 31812435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate variation explains a third of global crop yield variability.
    Ray DK; Gerber JS; MacDonald GK; West PC
    Nat Commun; 2015 Jan; 6():5989. PubMed ID: 25609225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming.
    Sun Q; Miao C; Hanel M; Borthwick AGL; Duan Q; Ji D; Li H
    Environ Int; 2019 Jul; 128():125-136. PubMed ID: 31048130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the impacts of climatic trend and fluctuation on crop yields in northern China.
    Qiao J; Yu D; Liu Y
    Environ Monit Assess; 2017 Oct; 189(11):532. PubMed ID: 28967045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate adaptation by crop migration.
    Sloat LL; Davis SJ; Gerber JS; Moore FC; Ray DK; West PC; Mueller ND
    Nat Commun; 2020 Mar; 11(1):1243. PubMed ID: 32144261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts of climate change and inter-annual variability on cereal crops in China from 1980 to 2008.
    Zhang T; Huang Y
    J Sci Food Agric; 2012 Jun; 92(8):1643-52. PubMed ID: 22190019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Impact of Technological Progress and Climate Change on Food Crop Production: Evidence from Sichuan-China.
    Chandio AA; Nasereldin YA; Anh DLT; Tang Y; Sargani GR; Zhang H
    Int J Environ Res Public Health; 2022 Aug; 19(16):. PubMed ID: 36011495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projected climate impacts to South African maize and wheat production in 2055: a comparison of empirical and mechanistic modeling approaches.
    Estes LD; Beukes H; Bradley BA; Debats SR; Oppenheimer M; Ruane AC; Schulze R; Tadross M
    Glob Chang Biol; 2013 Dec; 19(12):3762-74. PubMed ID: 23864352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation by Distance, Source-Sink Population Dynamics and Dispersal Facilitation by Trade Routes: Impact on Population Genetic Structure of a Stored Grain Pest.
    Cordeiro EMG; Campbell JF; Phillips T; Akhunov E
    G3 (Bethesda); 2019 May; 9(5):1457-1468. PubMed ID: 30808690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing.
    Duncan JM; Dash J; Atkinson PM
    Glob Chang Biol; 2015 Apr; 21(4):1541-51. PubMed ID: 24930864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of El Niño Southern Oscillation on the global yields of major crops.
    Iizumi T; Luo JJ; Challinor AJ; Sakurai G; Yokozawa M; Sakuma H; Brown ME; Yamagata T
    Nat Commun; 2014 May; 5():3712. PubMed ID: 24827075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Point stresses during reproductive stage rather than warming seasonal temperature determine yield in temperate rice.
    Espe MB; Hill JE; Hijmans RJ; McKenzie K; Mutters R; Espino LA; Leinfelder-Miles M; van Kessel C; Linquist BA
    Glob Chang Biol; 2017 Oct; 23(10):4386-4395. PubMed ID: 28391611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of methoprene for control of five species of psocids (psocoptera) on wheat, rice, and maize.
    Athanassiou CG; Arthur FH; Throne JE
    J Food Prot; 2010 Dec; 73(12):2244-9. PubMed ID: 21219743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate trends and global crop production since 1980.
    Lobell DB; Schlenker W; Costa-Roberts J
    Science; 2011 Jul; 333(6042):616-20. PubMed ID: 21551030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The global burden of pathogens and pests on major food crops.
    Savary S; Willocquet L; Pethybridge SJ; Esker P; McRoberts N; Nelson A
    Nat Ecol Evol; 2019 Mar; 3(3):430-439. PubMed ID: 30718852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.