These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 30166494)

  • 1. An appeal to magic? The discovery of a non-enzymatic metabolism and its role in the origins of life.
    Ralser M
    Biochem J; 2018 Aug; 475(16):2577-2592. PubMed ID: 30166494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean.
    Keller MA; Turchyn AV; Ralser M
    Mol Syst Biol; 2014 Apr; 10(4):725. PubMed ID: 24771084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway.
    Keller MA; Zylstra A; Castro C; Turchyn AV; Griffin JL; Ralser M
    Sci Adv; 2016 Jan; 2(1):e1501235. PubMed ID: 26824074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hexose phosphorylation for a non-enzymatic glycolysis and pentose phosphate pathway on early Earth.
    Hirakawa Y; Kakegawa T; Furukawa Y
    Sci Rep; 2024 Jan; 14(1):264. PubMed ID: 38168787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cysteine and iron accelerate the formation of ribose-5-phosphate, providing insights into the evolutionary origins of the metabolic network structure.
    Piedrafita G; Varma SJ; Castro C; Messner CB; Szyrwiel L; Griffin JL; Ralser M
    PLoS Biol; 2021 Dec; 19(12):e3001468. PubMed ID: 34860829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prebiotic metabolic networks?
    Luisi PL
    Mol Syst Biol; 2014 Apr; 10(4):729. PubMed ID: 24771086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A reverse KREBS cycle in photosynthesis: consensus at last.
    Buchanan BB; Arnon DI
    Photosynth Res; 1990; 24():47-53. PubMed ID: 11540925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual metabolomic profiling uncovers Toxoplasma manipulation of the host metabolome and the discovery of a novel parasite metabolic capability.
    Olson WJ; Martorelli Di Genova B; Gallego-Lopez G; Dawson AR; Stevenson D; Amador-Noguez D; Knoll LJ
    PLoS Pathog; 2020 Apr; 16(4):e1008432. PubMed ID: 32255806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recreating ancient metabolic pathways before enzymes.
    Muchowska KB; Chevallot-Beroux E; Moran J
    Bioorg Med Chem; 2019 Jun; 27(12):2292-2297. PubMed ID: 30871860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The RNA world and the origin of metabolic enzymes.
    Ralser M
    Biochem Soc Trans; 2014 Aug; 42(4):985-8. PubMed ID: 25109990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ordering events of biochemical evolution.
    Cunchillos C; Lecointre G
    Biochimie; 2007 May; 89(5):555-73. PubMed ID: 17408843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonenzymatic gluconeogenesis-like formation of fructose 1,6-bisphosphate in ice.
    Messner CB; Driscoll PC; Piedrafita G; De Volder MFL; Ralser M
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7403-7407. PubMed ID: 28652321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative biochemistry of CO2 fixation and the evolution of autotrophy.
    Peretó JG; Velasco AM; Becerra A; Lazcano A
    Int Microbiol; 1999 Mar; 2(1):3-10. PubMed ID: 10943384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway.
    Stincone A; Prigione A; Cramer T; Wamelink MM; Campbell K; Cheung E; Olin-Sandoval V; Grüning NM; Krüger A; Tauqeer Alam M; Keller MA; Breitenbach M; Brindle KM; Rabinowitz JD; Ralser M
    Biol Rev Camb Philos Soc; 2015 Aug; 90(3):927-63. PubMed ID: 25243985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating glycolysis, citric acid cycle, pentose phosphate pathway, and fatty acid beta-oxidation into a single computational model.
    Kloska SM; Pałczyński K; Marciniak T; Talaśka T; Wysocki BJ; Davis P; Wysocki TA
    Sci Rep; 2023 Sep; 13(1):14484. PubMed ID: 37660197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding central carbon metabolism of rapidly proliferating mammalian cells based on analysis of key enzymatic activities in GS-CHO cell lines.
    Zou W; Al-Rubeai M
    Biotechnol Appl Biochem; 2016 Sep; 63(5):642-651. PubMed ID: 26108557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The comparative metabolism of the mollicutes (Mycoplasmas): the utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function in the smallest free-living cells.
    Pollack JD; Williams MV; McElhaney RN
    Crit Rev Microbiol; 1997; 23(4):269-354. PubMed ID: 9439886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical aspects of 13C metabolic flux analysis with sole quantification of carbon dioxide labeling.
    Yang TH; Heinzle E; Wittmann C
    Comput Biol Chem; 2005 Apr; 29(2):121-33. PubMed ID: 15833440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A database of thermodynamic properties of the reactions of glycolysis, the tricarboxylic acid cycle, and the pentose phosphate pathway.
    Li X; Wu F; Qi F; Beard DA
    Database (Oxford); 2011; 2011():bar005. PubMed ID: 21482578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis.
    Coggins AJ; Powner MW
    Nat Chem; 2017 Apr; 9(4):310-317. PubMed ID: 28338685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.