These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30166574)

  • 21. Electrochemical CaC
    Zhang J; Wang Z; Bennaceur S; Jin X
    Angew Chem Int Ed Engl; 2023 May; 62(19):e202301479. PubMed ID: 36896823
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molten salt CO2 capture and electro-transformation (MSCC-ET) into capacitive carbon at medium temperature: effect of the electrolyte composition.
    Deng B; Chen Z; Gao M; Song Y; Zheng K; Tang J; Xiao W; Mao X; Wang D
    Faraday Discuss; 2016 Aug; 190():241-58. PubMed ID: 27193751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molten salt/liquid metal extraction: Electrochemical behaviors and thermodynamics properties of La, Pr, U and separation factors of La/U and Pr/U couples in liquid gallium cathode.
    Xu H; Zhang W; Wang C; Yang M; Yan T; Yan Y; Zhang M
    Appl Radiat Isot; 2022 Apr; 182():110149. PubMed ID: 35202920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Presence of Li Clusters in Molten LiCl-Li.
    Merwin A; Phillips WC; Williamson MA; Willit JL; Motsegood PN; Chidambaram D
    Sci Rep; 2016 May; 6():25435. PubMed ID: 27145895
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
    Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y
    Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Elucidating the influence of molten salt chemistries on the synthesis and stability of perovskites oxides.
    Levitas B; Piligian S; Ireland T; Gopalan S
    RSC Adv; 2021 Sep; 11(47):29156-29163. PubMed ID: 35492064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metallothermic Reduction of Molten Adduct [PCl
    Li T; Lin N; Han Y; Yi Z; Zhou J; Qian Y
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42469-42474. PubMed ID: 30421912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-Temperature Molten-Salt Production of Silicon Nanowires by the Electrochemical Reduction of CaSiO
    Dong Y; Slade T; Stolt MJ; Li L; Girard SN; Mai L; Jin S
    Angew Chem Int Ed Engl; 2017 Nov; 56(46):14453-14457. PubMed ID: 28952181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model.
    Köllner T; Boeck T; Schumacher J
    Phys Rev E; 2017 May; 95(5-1):053114. PubMed ID: 28618570
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrolysis of a molten semiconductor.
    Yin H; Chung B; Sadoway DR
    Nat Commun; 2016 Aug; 7():12584. PubMed ID: 27553525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct Conversion of Greenhouse Gas CO2 into Graphene via Molten Salts Electrolysis.
    Hu L; Song Y; Jiao S; Liu Y; Ge J; Jiao H; Zhu J; Wang J; Zhu H; Fray DJ
    ChemSusChem; 2016 Mar; 9(6):588-94. PubMed ID: 26871684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solid oxide membrane-assisted controllable electrolytic fabrication of metal carbides in molten salt.
    Zou X; Zheng K; Lu X; Xu Q; Zhou Z
    Faraday Discuss; 2016 Aug; 190():53-69. PubMed ID: 27195950
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microplasma Anode Meeting Molten Salt Electrochemistry: Charge Transfer and Atomic Emission Spectral Analysis.
    Wei G; Liu X; Lu Y; Wang Z; Liu S; Ye G; Chen J
    Anal Chem; 2018 Nov; 90(22):13163-13166. PubMed ID: 30387345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Facile Molten-Salt Route for Large-Scale Synthesis of NiFe2O4 Nanoplates with Enhanced Lithium Storage Capability.
    Huang G; Du X; Zhang F; Yin D; Wang L
    Chemistry; 2015 Sep; 21(40):14140-5. PubMed ID: 26251115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrolysis of metal oxides in MgCl2 based molten salts with an inert graphite anode.
    Yuan Y; Li W; Chen H; Wang Z; Jin X; Chen GZ
    Faraday Discuss; 2016 Aug; 190():85-96. PubMed ID: 27203663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transient Behavior of the Metal Interface in Lithium Metal-Garnet Batteries.
    Fu KK; Gong Y; Fu Z; Xie H; Yao Y; Liu B; Carter M; Wachsman E; Hu L
    Angew Chem Int Ed Engl; 2017 Nov; 56(47):14942-14947. PubMed ID: 28994191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of Degradation and Strategies for the Stabilization of Cathode-Electrolyte Interfaces in Li-Ion Batteries.
    Cabana J; Kwon BJ; Hu L
    Acc Chem Res; 2018 Feb; 51(2):299-308. PubMed ID: 29384354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spontaneous Self-Formation of 3D Plasmonic Optical Structures.
    Choi I; Shin Y; Song J; Hong S; Park Y; Kim D; Kang T; Lee LP
    ACS Nano; 2016 Aug; 10(8):7639-45. PubMed ID: 27348191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of Electrically Modulated Colloidal Droplet Transport.
    Dey R; Ghosh UU; Chakraborty S; DasGupta S
    Langmuir; 2015 Oct; 31(41):11269-78. PubMed ID: 26422170
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Situ Pyrolysis Concerted Formation of Si/C Hybrids during Molten Salt Electrolysis of SiO
    Weng W; Zeng C; Xiao W
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9156-9163. PubMed ID: 30789694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.