These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Optofluidic lens based on electrowetting liquid piston. Li LY; Yuan RY; Wang JH; Li L; Wang QH Sci Rep; 2019 Sep; 9(1):13062. PubMed ID: 31506551 [TBL] [Abstract][Full Text] [Related]
3. Optofluidic router based on tunable liquid-liquid mirrors. Müller P; Kopp D; Llobera A; Zappe H Lab Chip; 2014 Feb; 14(4):737-43. PubMed ID: 24287814 [TBL] [Abstract][Full Text] [Related]
4. Electrowetting-driven solar indoor lighting (e-SIL): an optofluidic approach towards sustainable buildings. Thio SK; Jiang D; Park SY Lab Chip; 2018 Jun; 18(12):1725-1735. PubMed ID: 29726880 [TBL] [Abstract][Full Text] [Related]
5. Electrically optofluidic zoom system with a large zoom range and high-resolution image. Li L; Yuan RY; Wang JH; Wang QH Opt Express; 2017 Sep; 25(19):22280-22291. PubMed ID: 29041541 [TBL] [Abstract][Full Text] [Related]
6. Recent Developments in Optofluidic Lens Technology. Mishra K; van den Ende D; Mugele F Micromachines (Basel); 2016 Jun; 7(6):. PubMed ID: 30404276 [TBL] [Abstract][Full Text] [Related]
10. Variable aperture controlled by microelectrofluidic iris. Chang JH; Jung KD; Lee E; Choi M; Lee S; Kim W Opt Lett; 2013 Aug; 38(15):2919-22. PubMed ID: 23903179 [TBL] [Abstract][Full Text] [Related]
11. Optofluidic lens with tunable focal length and asphericity. Mishra K; Murade C; Carreel B; Roghair I; Oh JM; Manukyan G; van den Ende D; Mugele F Sci Rep; 2014 Sep; 4():6378. PubMed ID: 25224851 [TBL] [Abstract][Full Text] [Related]
12. Micro-optofluidic Lenses: A review. Nguyen NT Biomicrofluidics; 2010 Jul; 4(3):. PubMed ID: 20714369 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and Actuation of an Electrowetting Droplet Array on a Flexible Substrate. Van Grinsven KL; Ousati Ashtiani A; Jiang H Micromachines (Basel); 2017 Nov; 8(11):. PubMed ID: 30400522 [TBL] [Abstract][Full Text] [Related]
14. Displaceable and focus-tunable electrowetting optofluidic lens. Li L; Wang JH; Wang QH; Wu ST Opt Express; 2018 Oct; 26(20):25839-25848. PubMed ID: 30469679 [TBL] [Abstract][Full Text] [Related]
15. Tunable fluidic lens with a dynamic high-order aberration control. Zhao P; Sauter D; Zappe H Appl Opt; 2021 Jun; 60(18):5302-5311. PubMed ID: 34263767 [TBL] [Abstract][Full Text] [Related]
16. Design and wavefront characterization of an electrically tunable aspherical optofluidic lens. Mishra K; Narayanan A; Mugele F Opt Express; 2019 Jun; 27(13):17601-17609. PubMed ID: 31252717 [TBL] [Abstract][Full Text] [Related]
17. Optical switch based on tunable aperture. Li L; Liu C; Wang QH Opt Lett; 2012 Aug; 37(16):3306-8. PubMed ID: 23381239 [TBL] [Abstract][Full Text] [Related]
18. Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field. Jonáš A; Pilát Z; Ježek J; Bernatová S; Jedlička P; Aas M; Kiraz A; Zemánek P ACS Appl Mater Interfaces; 2021 Nov; 13(43):50657-50667. PubMed ID: 34674523 [TBL] [Abstract][Full Text] [Related]
20. Multiphase optofluidics on an electro-microfluidic platform powered by electrowetting and dielectrophoresis. Fan SK; Wang FM Lab Chip; 2014 Aug; 14(15):2728-38. PubMed ID: 24899133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]