These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 30167127)

  • 1. Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide.
    Muskens OL; Bergamini L; Wang Y; Gaskell JM; Zabala N; de Groot CH; Sheel DW; Aizpurua J
    Light Sci Appl; 2016 Oct; 5(10):e16173. PubMed ID: 30167127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active directional switching of surface plasmon polaritons using a phase transition material.
    Kim SJ; Yun H; Park K; Hong J; Yun JG; Lee K; Kim J; Jeong SJ; Mun SE; Sung J; Lee YW; Lee B
    Sci Rep; 2017 Mar; 7():43723. PubMed ID: 28262702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terahertz-Triggered Phase Transition and Hysteresis Narrowing in a Nanoantenna Patterned Vanadium Dioxide Film.
    Thompson ZJ; Stickel A; Jeong YG; Han S; Son BH; Paul MJ; Lee B; Mousavian A; Seo G; Kim HT; Lee YS; Kim DS
    Nano Lett; 2015 Sep; 15(9):5893-8. PubMed ID: 26301339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hotspot-mediated ultrafast nonlinear control of multifrequency plasmonic nanoantennas.
    Abb M; Wang Y; de Groot CH; Muskens OL
    Nat Commun; 2014 Sep; 5():4869. PubMed ID: 25189713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable optical antennas enabled by the phase transition in vanadium dioxide.
    Earl SK; James TD; Davis TJ; McCallum JC; Marvel RE; Haglund RF; Roberts A
    Opt Express; 2013 Nov; 21(22):27503-8. PubMed ID: 24216970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant nonlinear response of terahertz nanoresonators on VO2 thin film.
    Kyoung J; Seo M; Park H; Koo S; Kim HS; Park Y; Kim BJ; Ahn K; Park N; Kim HT; Kim DS
    Opt Express; 2010 Aug; 18(16):16452-9. PubMed ID: 20721032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials.
    Savaliya PB; Thomas A; Dua R; Dhawan A
    Opt Express; 2017 Oct; 25(20):23755-23772. PubMed ID: 29041327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-optical control of a single plasmonic nanoantenna-ITO hybrid.
    Abb M; Albella P; Aizpurua J; Muskens OL
    Nano Lett; 2011 Jun; 11(6):2457-63. PubMed ID: 21542564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoinduced surface plasmon switching at VO
    Kumar N; Rúa A; Aldama J; Echeverría K; Fernández FE; Lysenko S
    Opt Express; 2018 May; 26(11):13773-13782. PubMed ID: 29877425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic nanoantennas on VO
    Gupta N; Savaliya PB; Dhawan A
    Opt Express; 2020 Sep; 28(19):27476-27494. PubMed ID: 32988041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles.
    Singh A; Calbris G; van Hulst NF
    Nano Lett; 2014 Aug; 14(8):4715-23. PubMed ID: 25019603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unidirectional Enhanced Dipolar Emission with an Individual Dielectric Nanoantenna.
    Zhang T; Xu J; Deng ZL; Hu D; Qin F; Li X
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 31003409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of plasmonic nanoantennas by reversible metal-insulator transition.
    Abate Y; Marvel RE; Ziegler JI; Gamage S; Javani MH; Stockman MI; Haglund RF
    Sci Rep; 2015 Sep; 5():13997. PubMed ID: 26358623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformal Coating of a Phase Change Material on Ordered Plasmonic Nanorod Arrays for Broadband All-Optical Switching.
    Guo P; Weimer MS; Emery JD; Diroll BT; Chen X; Hock AS; Chang RP; Martinson AB; Schaller RD
    ACS Nano; 2017 Jan; 11(1):693-701. PubMed ID: 27991757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broad electrical tuning of graphene-loaded plasmonic antennas.
    Yao Y; Kats MA; Genevet P; Yu N; Song Y; Kong J; Capasso F
    Nano Lett; 2013 Mar; 13(3):1257-64. PubMed ID: 23441688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical nanoimaging of laser-switched phase-change plasmonic infrared antennas.
    Chen Q; Lu D; Qin T; Luo X; Xu M; Li P
    Opt Lett; 2024 Feb; 49(4):1021-1024. PubMed ID: 38359232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review on the Development of Tunable Graphene Nanoantennas for Terahertz Optoelectronic and Plasmonic Applications.
    Ullah Z; Witjaksono G; Nawi I; Tansu N; Irfan Khattak M; Junaid M
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32143388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas.
    Gui L; Bagheri S; Strohfeldt N; Hentschel M; Zgrabik CM; Metzger B; Linnenbank H; Hu EL; Giessen H
    Nano Lett; 2016 Sep; 16(9):5708-13. PubMed ID: 27494639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 3D Plasmonic Antenna-Reactor for Nanoscale Thermal Hotspots and Gradients.
    Dongare PD; Zhao Y; Renard D; Yang J; Neumann O; Metz J; Yuan L; Alabastri A; Nordlander P; Halas NJ
    ACS Nano; 2021 May; 15(5):8761-8769. PubMed ID: 33900744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A resonant scanning dipole-antenna probe for enhanced nanoscale imaging.
    Neumann L; van 't Oever J; van Hulst NF
    Nano Lett; 2013 Nov; 13(11):5070-4. PubMed ID: 24124987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.