These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 30167159)

  • 1. Path-polarization hyperentangled and cluster states of photons on a chip.
    Ciampini MA; Orieux A; Paesani S; Sciarrino F; Corrielli G; Crespi A; Ramponi R; Osellame R; Mataloni P
    Light Sci Appl; 2016 Apr; 5(4):e16064. PubMed ID: 30167159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum hyperentanglement and its applications in quantum information processing.
    Deng FG; Ren BC; Li XH
    Sci Bull (Beijing); 2017 Jan; 62(1):46-68. PubMed ID: 36718070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlinearity.
    Liu Q; Wang GY; Ai Q; Zhang M; Deng FG
    Sci Rep; 2016 Feb; 6():22016. PubMed ID: 26912172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental one-way quantum computing.
    Walther P; Resch KJ; Rudolph T; Schenck E; Weinfurter H; Vedral V; Aspelmeyer M; Zeilinger A
    Nature; 2005 Mar; 434(7030):169-76. PubMed ID: 15758991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum Computation Based on Photons with Three Degrees of Freedom.
    Luo MX; Li HR; Lai H; Wang X
    Sci Rep; 2016 May; 6():25977. PubMed ID: 27174302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hong-Ou-Mandel Interference between Two Hyperentangled Photons Enables Observation of Symmetric and Antisymmetric Particle Exchange Phases.
    Liu ZF; Chen C; Xu JM; Cheng ZM; Ren ZC; Dong BW; Lou YC; Yang YX; Xue ST; Liu ZH; Zhu WZ; Wang XL; Wang HT
    Phys Rev Lett; 2022 Dec; 129(26):263602. PubMed ID: 36608177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities.
    Ren BC; Wei HR; Hua M; Li T; Deng FG
    Opt Express; 2012 Oct; 20(22):24664-77. PubMed ID: 23187229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete analysis of hyperentangled Bell states assisted with auxiliary hyperentanglement.
    Wang GY; Ren BC; Deng FG; Long GL
    Opt Express; 2019 Mar; 27(6):8994-9003. PubMed ID: 31052709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete hyperentangled Bell state analysis for polarization and time-bin hyperentanglement.
    Li XH; Ghose S
    Opt Express; 2016 Aug; 24(16):18388-98. PubMed ID: 27505802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperentanglement concentration of nonlocal two-photon six-qubit systems via the cross-Kerr nonlinearity.
    Liu Q; Song GZ; Qiu TH; Zhang XM; Ma HY; Zhang M
    Sci Rep; 2020 Dec; 10(1):21444. PubMed ID: 33293577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient quantum key distribution against collective noise using polarization and transverse spatial mode of photons.
    Guo PL; Dong C; He Y; Jing F; He WT; Ren BC; Li CY; Deng FG
    Opt Express; 2020 Feb; 28(4):4611-4624. PubMed ID: 32121695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General hyperconcentration of photonic polarization-time-bin hyperentanglement assisted by nitrogen-vacancy centers coupled to resonators.
    Du FF; Deng FG; Long GL
    Sci Rep; 2016 Nov; 6():35922. PubMed ID: 27804973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete hyperentangled-Bell-state analysis for photonic qubits assisted by a three-level Λ-type system.
    Wang TJ; Wang C
    Sci Rep; 2016 Jan; 6():19497. PubMed ID: 26780930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental realization of a four-photon seven-qubit graph state for one-way quantum computation.
    Lee SM; Park HS; Cho J; Kang Y; Lee JY; Kim H; Lee DH; Choi SK
    Opt Express; 2012 Mar; 20(7):6915-26. PubMed ID: 22453369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remote preparation for single-photon two-qubit hybrid state with hyperentanglement via linear-optical elements.
    Jiao XF; Zhou P; Lv SX; Wang ZY
    Sci Rep; 2019 Mar; 9(1):4663. PubMed ID: 30894566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient hyperentanglement purification for three-photon systems with the fidelity-robust quantum gates and hyperentanglement link.
    Du FF; Liu YT; Shi ZR; Liang YX; Tang J; Liu J
    Opt Express; 2019 Sep; 27(19):27046-27061. PubMed ID: 31674573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom.
    Feng LT; Zhang M; Zhou ZY; Li M; Xiong X; Yu L; Shi BS; Guo GP; Dai DX; Ren XF; Guo GC
    Nat Commun; 2016 Jun; 7():11985. PubMed ID: 27321821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical scheme for generating hyperentanglement having photonic qubit and time-bin via quantum dot and cross-Kerr nonlinearity.
    Hong CH; Heo J; Kang MS; Jang J; Yang HJ
    Sci Rep; 2018 Feb; 8(1):2566. PubMed ID: 29416070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation and characterization of ultrabroadband polarization-frequency hyperentangled photons.
    Lu HH; Alshowkan M; Myilswamy KV; Weiner AM; Lukens JM; Peters NA
    Opt Lett; 2023 Nov; 48(22):6031-6034. PubMed ID: 37966781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.