These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 30167159)
21. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Takeda S; Mizuta T; Fuwa M; van Loock P; Furusawa A Nature; 2013 Aug; 500(7462):315-8. PubMed ID: 23955230 [TBL] [Abstract][Full Text] [Related]
22. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Dicarlo L; Reed MD; Sun L; Johnson BR; Chow JM; Gambetta JM; Frunzio L; Girvin SM; Devoret MH; Schoelkopf RJ Nature; 2010 Sep; 467(7315):574-8. PubMed ID: 20882013 [TBL] [Abstract][Full Text] [Related]
23. Quantum computation based on photonic systems with two degrees of freedom assisted by the weak cross-Kerr nonlinearity. Luo MX; Li HR; Lai H Sci Rep; 2016 Jul; 6():29939. PubMed ID: 27424767 [TBL] [Abstract][Full Text] [Related]
24. Parallel photonic quantum computation assisted by quantum dots in one-side optical microcavities. Luo MX; Wang X Sci Rep; 2014 Jul; 4():5732. PubMed ID: 25030424 [TBL] [Abstract][Full Text] [Related]
25. Four-dimensional orbital angular momentum Bell-state measurement assisted by the auxiliary polarization and path degrees of freedom. Wang C; Chen Y; Chen L Opt Express; 2022 Sep; 30(19):34468-34478. PubMed ID: 36242458 [TBL] [Abstract][Full Text] [Related]
26. Direct Generation of Narrow-band Hyperentangled Photons. Zhao TM; Ihn YS; Kim YH Phys Rev Lett; 2019 Mar; 122(12):123607. PubMed ID: 30978083 [TBL] [Abstract][Full Text] [Related]
27. Deterministic All-Optical Quantum Teleportation of Four Degrees of Freedom. Liu S; Lv Y; Wang X; Wang J; Lou Y; Jing J Phys Rev Lett; 2024 Mar; 132(10):100801. PubMed ID: 38518346 [TBL] [Abstract][Full Text] [Related]
28. Experimental realization of one-way quantum computing with two-photon four-qubit cluster states. Chen K; Li CM; Zhang Q; Chen YA; Goebel A; Chen S; Mair A; Pan JW Phys Rev Lett; 2007 Sep; 99(12):120503. PubMed ID: 17930486 [TBL] [Abstract][Full Text] [Related]
30. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. De Greve K; Yu L; McMahon PL; Pelc JS; Natarajan CM; Kim NY; Abe E; Maier S; Schneider C; Kamp M; Höfling S; Hadfield RH; Forchel A; Fejer MM; Yamamoto Y Nature; 2012 Nov; 491(7424):421-5. PubMed ID: 23151585 [TBL] [Abstract][Full Text] [Related]
31. Indistinguishable Photons from Deterministically Integrated Single Quantum Dots in Heterogeneous GaAs/Si Schnauber P; Singh A; Schall J; Park SI; Song JD; Rodt S; Srinivasan K; Reitzenstein S; Davanco M Nano Lett; 2019 Oct; 19(10):7164-7172. PubMed ID: 31470692 [TBL] [Abstract][Full Text] [Related]
32. Femtosecond Laser Direct Writing of Integrated Photonic Quantum Chips for Generating Path-Encoded Bell States. Li M; Zhang Q; Chen Y; Ren X; Gong Q; Li Y Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33334077 [TBL] [Abstract][Full Text] [Related]
33. Generation of Polarization-Entangled Photons from Self-Assembled Quantum Dots in a Hybrid Quantum Photonic Chip. Jin T; Li X; Liu R; Ou W; Zhu Y; Wang X; Liu J; Huo Y; Ou X; Zhang J Nano Lett; 2022 Jan; 22(2):586-593. PubMed ID: 35025517 [TBL] [Abstract][Full Text] [Related]
34. On-Demand Integrated Quantum Memory for Polarization Qubits. Zhu TX; Liu C; Jin M; Su MX; Liu YP; Li WJ; Ye Y; Zhou ZQ; Li CF; Guo GC Phys Rev Lett; 2022 May; 128(18):180501. PubMed ID: 35594095 [TBL] [Abstract][Full Text] [Related]
35. Coherent generation and manipulation of entangled stationary photons based on a multiple degrees of freedom quantum memory. Qiu TH; Li H; Xie M; Liu Q; Ma HY Opt Express; 2019 Sep; 27(20):27477-27487. PubMed ID: 31684513 [TBL] [Abstract][Full Text] [Related]
36. On-chip steering of entangled photons in nonlinear photonic crystals. Leng HY; Yu XQ; Gong YX; Xu P; Xie ZD; Jin H; Zhang C; Zhu SN Nat Commun; 2011 Aug; 2():429. PubMed ID: 21847103 [TBL] [Abstract][Full Text] [Related]
37. Experimental realization of SWAP operation on hyper-encoded qubits. Stárek R; Miková M; Straka I; Dušek M; Ježek M; Fiurášek J; Mičuda M Opt Express; 2018 Apr; 26(7):8443-8452. PubMed ID: 29715811 [TBL] [Abstract][Full Text] [Related]
38. Complete and faithful hyperentangled-Bell-state analysis of photon systems using a failure-heralded and fidelity-robust quantum gate. Cao C; Zhang L; Han YH; Yin PP; Fan L; Duan YW; Zhang R Opt Express; 2020 Feb; 28(3):2857-2872. PubMed ID: 32121965 [TBL] [Abstract][Full Text] [Related]
39. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Silverstone JW; Santagati R; Bonneau D; Strain MJ; Sorel M; O'Brien JL; Thompson MG Nat Commun; 2015 Aug; 6():7948. PubMed ID: 26245267 [TBL] [Abstract][Full Text] [Related]
40. Experimental investigation of a four-qubit linear-optical quantum logic circuit. Stárek R; Mičuda M; Miková M; Straka I; Dušek M; Ježek M; Fiurášek J Sci Rep; 2016 Sep; 6():33475. PubMed ID: 27647176 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]