These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30167196)

  • 41. Trapping and filtering of light by single Si nanospheres in a GaAs nanocavity.
    Huang Y; Yan J; Ma C; Yang G
    Nanoscale; 2019 Sep; 11(35):16299-16307. PubMed ID: 31465057
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing.
    Cetin AE; Altug H
    ACS Nano; 2012 Nov; 6(11):9989-95. PubMed ID: 23092386
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optical Fano resonance of an individual semiconductor nanostructure.
    Fan P; Yu Z; Fan S; Brongersma ML
    Nat Mater; 2014 May; 13(5):471-5. PubMed ID: 24747781
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tunable all-optical plasmonic diode based on Fano resonance in nonlinear waveguide coupled with cavities.
    Fan C; Shi F; Wu H; Chen Y
    Opt Lett; 2015 Jun; 40(11):2449-52. PubMed ID: 26030529
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Observation of Supercavity Modes in Subwavelength Dielectric Resonators.
    Odit M; Koshelev K; Gladyshev S; Ladutenko K; Kivshar Y; Bogdanov A
    Adv Mater; 2021 Jan; 33(1):e2003804. PubMed ID: 33169472
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.
    Song H; Zhang J; Fei G; Wang J; Jiang K; Wang P; Lu Y; Iorsh I; Xu W; Jia J; Zhang L; Kivshar YS; Zhang L
    Nanotechnology; 2016 Oct; 27(41):415708. PubMed ID: 27607837
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response.
    Dmitriev PA; Baranov DG; Milichko VA; Makarov SV; Mukhin IS; Samusev AK; Krasnok AE; Belov PA; Kivshar YS
    Nanoscale; 2016 May; 8(18):9721-6. PubMed ID: 27113352
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Active tuning of the Fano resonance from a Si nanosphere dimer by the substrate effect.
    Huang Y; Yan J; Ma C; Yang G
    Nanoscale Horiz; 2019 Jan; 4(1):148-157. PubMed ID: 32254150
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrically Controlled Scattering in a Hybrid Dielectric-Plasmonic Nanoantenna.
    Yan J; Ma C; Liu P; Wang C; Yang G
    Nano Lett; 2017 Aug; 17(8):4793-4800. PubMed ID: 28686459
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fano-like coupling between two oppositely enhanced processes by diffraction in a dielectric grating.
    Zhang J; Zhang X
    Opt Express; 2015 Nov; 23(23):30429-37. PubMed ID: 26698522
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dispersion control in plasmonic open nanocavities.
    Zhu X; Zhang J; Xu J; Li H; Wu X; Liao Z; Zhao Q; Yu D
    ACS Nano; 2011 Aug; 5(8):6546-52. PubMed ID: 21749112
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Subwavelength dielectric resonators for nonlinear nanophotonics.
    Koshelev K; Kruk S; Melik-Gaykazyan E; Choi JH; Bogdanov A; Park HG; Kivshar Y
    Science; 2020 Jan; 367(6475):288-292. PubMed ID: 31949078
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultrastrong coupling of CdZnS/ZnS quantum dots to bonding breathing plasmons of aluminum metal-insulator-metal nanocavities in near-ultraviolet spectrum.
    Li L; Wang L; Du C; Guan Z; Xiang Y; Wu W; Ren M; Zhang X; Tang A; Cai W; Xu J
    Nanoscale; 2020 Feb; 12(5):3112-3120. PubMed ID: 31965128
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement.
    Wang H; Liu P; Ke Y; Su Y; Zhang L; Xu N; Deng S; Chen H
    ACS Nano; 2015 Jan; 9(1):436-48. PubMed ID: 25554917
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.
    He Y; Zhu KD
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28632165
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Subwavelength Silicon Nanoblocks for Directional Emission Manipulation.
    Zhang T; Li X; Xu J; Zhang X; Deng ZL; Li X
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32604754
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Magnetic Fano resonance-induced second-harmonic generation enhancement in plasmonic metamolecule rings.
    Yang DJ; Im SJ; Pan GM; Ding SJ; Yang ZJ; Hao ZH; Zhou L; Wang QQ
    Nanoscale; 2017 May; 9(18):6068-6075. PubMed ID: 28443939
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strong coupling between few molecular excitons and Fano-like cavity plasmon in two-layered dielectric-metal core-shell resonators.
    Wu W; Wan M; Gu P; Chen Z; Wang Z
    Opt Express; 2017 Jan; 25(2):1495-1504. PubMed ID: 28158030
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanophotonics with 2D transition metal dichalcogenides [Invited].
    Krasnok A; Lepeshov S; AlĂș A
    Opt Express; 2018 Jun; 26(12):15972-15994. PubMed ID: 30114850
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Theoretical investigations on microwave Fano resonances in 3D-printable hollow dielectric resonators.
    Lee E; Seo IC; Jeong HY; An SC; Jun YC
    Sci Rep; 2017 Nov; 7(1):16186. PubMed ID: 29170527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.