These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30167209)

  • 1. Automated design of freeform imaging systems.
    Yang T; Jin GF; Zhu J
    Light Sci Appl; 2017 Oct; 6(10):e17081. PubMed ID: 30167209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generating starting points for designing freeform imaging optical systems based on deep learning.
    Chen W; Yang T; Cheng D; Wang Y
    Opt Express; 2021 Aug; 29(17):27845-27870. PubMed ID: 34615192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast automatic design method for freeform imaging systems through system construction and correction.
    Wu W; Wang H; Jin G; Zhu J
    Opt Lett; 2020 Sep; 45(18):5140-5143. PubMed ID: 32932472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design method for nonsymmetric imaging optics consisting of freeform-surface-substrate phase elements.
    Duan Y; Yang T; Cheng D; Wang Y
    Opt Express; 2020 Jan; 28(2):1603-1620. PubMed ID: 32121868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design method of nonsymmetric imaging systems consisting of multiple flat phase elements.
    Yang T; Cheng D; Wang Y
    Opt Express; 2018 Sep; 26(19):25347-25363. PubMed ID: 30469637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct design of freeform surfaces and freeform imaging systems with a point-by-point three-dimensional construction-iteration method.
    Yang T; Zhu J; Wu X; Jin G
    Opt Express; 2015 Apr; 23(8):10233-46. PubMed ID: 25969065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated design of freeform imaging systems for automotive heads-up display applications.
    Fan R; Wei S; Ji H; Qian Z; Tan H; Mo Y; Ma D
    Opt Express; 2023 Mar; 31(6):10758-10774. PubMed ID: 37157616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing freeform imaging systems based on reinforcement learning.
    Yang T; Cheng D; Wang Y
    Opt Express; 2020 Sep; 28(20):30309-30323. PubMed ID: 33114913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of freeform imaging systems with linear field-of-view using a construction and iteration process.
    Yang T; Zhu J; Jin G
    Opt Express; 2014 Feb; 22(3):3362-74. PubMed ID: 24663627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Starting configuration design method of freeform imaging and afocal systems with a real exit pupil.
    Yang T; Zhu J; Jin G
    Appl Opt; 2016 Jan; 55(2):345-53. PubMed ID: 26835771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct generation of starting points for freeform off-axis three-mirror imaging system design using neural network based deep-learning.
    Yang T; Cheng D; Wang Y
    Opt Express; 2019 Jun; 27(12):17228-17238. PubMed ID: 31252936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Point-by-point design method for mixed-surface-type off-axis reflective imaging systems with spherical, aspheric, and freeform surfaces.
    Gong T; Jin G; Zhu J
    Opt Express; 2017 May; 25(9):10663-10676. PubMed ID: 28468437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeform imaging spectrometer design using a point-by-point design method.
    Yang T; Cheng D; Wang Y
    Appl Opt; 2018 Jun; 57(16):4718-4727. PubMed ID: 29877356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freeform imaging systems: Fermat's principle unlocks "first time right" design.
    Duerr F; Thienpont H
    Light Sci Appl; 2021 May; 10(1):95. PubMed ID: 33958573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated freeform imaging system design with generalized ray tracing and simultaneous multi-surface analytic calculation.
    Nie Y; Shafer DR; Ottevaere H; Thienpont H; Duerr F
    Opt Express; 2021 May; 29(11):17227-17245. PubMed ID: 34154269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design method of freeform off-axis reflective imaging systems with a direct construction process.
    Yang T; Zhu J; Hou W; Jin G
    Opt Express; 2014 Apr; 22(8):9193-205. PubMed ID: 24787809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of off-axis reflective imaging systems based on freeform holographic elements.
    Yang T; Wang Y; Ni D; Cheng D; Wang Y
    Opt Express; 2022 May; 30(11):20117-20134. PubMed ID: 36221769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic design method of starting points of freeform off-axis reflective imaging systems of small volume.
    Liu X; Zhu J
    Opt Express; 2022 Feb; 30(5):7954-7967. PubMed ID: 35299547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated design of a slim catadioptric system combining freeform surface and zoom lens.
    Liu Y; Yang B; Zhuang S
    Opt Express; 2022 Apr; 30(8):13372-13390. PubMed ID: 35472951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of an off-axis near-eye AR display system based on a full-color freeform holographic optical element.
    Wang Y; Yang T; Ni D; Cheng D; Wang Y
    Opt Lett; 2023 Mar; 48(5):1288-1291. PubMed ID: 36857270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.