These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 30167281)
1. Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling. Kreinberg S; Chow WW; Wolters J; Schneider C; Gies C; Jahnke F; Höfling S; Kamp M; Reitzenstein S Light Sci Appl; 2017 Aug; 6(8):e17030. PubMed ID: 30167281 [TBL] [Abstract][Full Text] [Related]
2. Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers. Jahnke F; Gies C; Aßmann M; Bayer M; Leymann HA; Foerster A; Wiersig J; Schneider C; Kamp M; Höfling S Nat Commun; 2016 May; 7():11540. PubMed ID: 27161302 [TBL] [Abstract][Full Text] [Related]
3. Thresholdless coherence in a superradiant laser. Oh SH; Kim J; Ha J; Son G; An K Light Sci Appl; 2024 Sep; 13(1):239. PubMed ID: 39237496 [TBL] [Abstract][Full Text] [Related]
4. Mutual coupling and synchronization of optically coupled quantum-dot micropillar lasers at ultra-low light levels. Kreinberg S; Porte X; Schicke D; Lingnau B; Schneider C; Höfling S; Kanter I; Lüdge K; Reitzenstein S Nat Commun; 2019 Apr; 10(1):1539. PubMed ID: 30948766 [TBL] [Abstract][Full Text] [Related]
5. A steady-state superradiant laser with less than one intracavity photon. Bohnet JG; Chen Z; Weiner JM; Meiser D; Holland MJ; Thompson JK Nature; 2012 Apr; 484(7392):78-81. PubMed ID: 22481360 [TBL] [Abstract][Full Text] [Related]
6. Distinctive signature of indium gallium nitride quantum dot lasing in microdisk cavities. Woolf A; Puchtler T; Aharonovich I; Zhu T; Niu N; Wang D; Oliver R; Hu EL Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14042-6. PubMed ID: 25197073 [TBL] [Abstract][Full Text] [Related]
12. Experimental realization of a one-atom laser in the regime of strong coupling. McKeever J; Boca A; Boozer AD; Buck JR; Kimble HJ Nature; 2003 Sep; 425(6955):268-71. PubMed ID: 13679909 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of Single-Photon Emission Rate from InGaAs/GaAs Quantum-Dot/Nanowire Heterostructure by Wire-Groove Nanocavity. Wei W; Yan X; Liu J; Shen B; Luo W; Ma X; Zhang X Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31052364 [TBL] [Abstract][Full Text] [Related]
14. Boost of single-photon emission by perfect coupling of InAs/GaAs quantum dot and micropillar cavity mode. Li S; Chen Y; Shang X; Yu Y; Yang J; Huang J; Su X; Shen J; Sun B; Ni H; Su X; Wang K; Niu Z Nanoscale Res Lett; 2020 Jul; 15(1):145. PubMed ID: 32648067 [TBL] [Abstract][Full Text] [Related]
15. Electro-optical switching between polariton and cavity lasing in an InGaAs quantum well microcavity. Amthor M; Weißenseel S; Fischer J; Kamp M; Schneider C; Höfling S Opt Express; 2014 Dec; 22(25):31146-53. PubMed ID: 25607064 [TBL] [Abstract][Full Text] [Related]
16. Superradiance on the millihertz linewidth strontium clock transition. Norcia MA; Winchester MN; Cline JR; Thompson JK Sci Adv; 2016 Oct; 2(10):e1601231. PubMed ID: 27757423 [TBL] [Abstract][Full Text] [Related]
17. Superradiant lasing in inhomogeneously broadened ensembles with spatially varying coupling. Bychek A; Hotter C; Plankensteiner D; Ritsch H Open Res Eur; 2021; 1():73. PubMed ID: 37645148 [No Abstract] [Full Text] [Related]