These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30167372)

  • 1. Brain anomaly networks uncover heterogeneous functional reorganization patterns after stroke.
    Zou Y; Zhao Z; Yin D; Fan M; Small M; Liu Z; Hilgetag CC; Kurths J
    Neuroimage Clin; 2018; 20():523-530. PubMed ID: 30167372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse functional connectivity patterns of resting-state brain networks associated with good and poor hand outcomes following stroke.
    Hong W; Lin Q; Cui Z; Liu F; Xu R; Tang C
    Neuroimage Clin; 2019; 24():102065. PubMed ID: 31795061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disrupted functional network integrity and flexibility after stroke: Relation to motor impairments.
    Larivière S; Ward NS; Boudrias MH
    Neuroimage Clin; 2018; 19():883-891. PubMed ID: 29946512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI.
    Xu T; Cullen KR; Mueller B; Schreiner MW; Lim KO; Schulz SC; Parhi KK
    Neuroimage Clin; 2016; 11():302-315. PubMed ID: 26977400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed connectivity of brain default networks in resting state using GCA and motif.
    Jiao Z; Wang H; Ma K; Zou L; Xiang J
    Front Biosci (Landmark Ed); 2017 Jun; 22(10):1634-1643. PubMed ID: 28410136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural coupling between contralesional motor and frontoparietal networks correlates with motor ability in individuals with chronic stroke.
    Lam TK; Dawson DR; Honjo K; Ross B; Binns MA; Stuss DT; Black SE; Chen JJ; Levine BT; Fujioka T; Chen JL
    J Neurol Sci; 2018 Jan; 384():21-29. PubMed ID: 29249372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing rapid network reorganization of motor and language functions via neuromodulation and neuroimaging.
    Hartwigsen G; Volz LJ
    Neuroimage; 2021 Jan; 224():117449. PubMed ID: 33059054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Reorganization of Resting-State Brain Networks Associated With Motor Imagery Training in Chronic Stroke Patients.
    Wang H; Xu G; Wang X; Sun C; Zhu B; Fan M; Jia J; Guo X; Sun L
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2237-2245. PubMed ID: 31536007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-function relationships during segregated and integrated network states of human brain functional connectivity.
    Fukushima M; Betzel RF; He Y; van den Heuvel MP; Zuo XN; Sporns O
    Brain Struct Funct; 2018 Apr; 223(3):1091-1106. PubMed ID: 29090337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Putative Multiple-Demand System in the Macaque Brain.
    Mitchell DJ; Bell AH; Buckley MJ; Mitchell AS; Sallet J; Duncan J
    J Neurosci; 2016 Aug; 36(33):8574-85. PubMed ID: 27535906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping grip force to motor networks.
    Weitnauer L; Frisch S; Melie-Garcia L; Preisig M; Schroeter ML; Sajfutdinow I; Kherif F; Draganski B
    Neuroimage; 2021 Apr; 229():117735. PubMed ID: 33454401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging.
    Catalino MP; Yao S; Green DL; Laws ER; Golby AJ; Tie Y
    Neurosurg Focus; 2020 Feb; 48(2):E9. PubMed ID: 32006946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered intra- and inter-network functional coupling of resting-state networks associated with motor dysfunction in stroke.
    Zhao Z; Wu J; Fan M; Yin D; Tang C; Gong J; Xu G; Gao X; Yu Q; Yang H; Sun L; Jia J
    Hum Brain Mapp; 2018 Aug; 39(8):3388-3397. PubMed ID: 29691945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased integration and information capacity in stroke measured by whole brain models of resting state activity.
    Adhikari MH; Hacker CD; Siegel JS; Griffa A; Hagmann P; Deco G; Corbetta M
    Brain; 2017 Apr; 140(4):1068-1085. PubMed ID: 28334882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ANOVA approach for statistical comparisons of brain networks.
    Fraiman D; Fraiman R
    Sci Rep; 2018 Mar; 8(1):4746. PubMed ID: 29549369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structurofunctional resting-state networks correlate with motor function in chronic stroke.
    Kalinosky BT; Berrios Barillas R; Schmit BD
    Neuroimage Clin; 2017; 16():610-623. PubMed ID: 28971011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of ischemic stroke on connectivity gradients.
    Bayrak Ş; Khalil AA; Villringer K; Fiebach JB; Villringer A; Margulies DS; Ovadia-Caro S
    Neuroimage Clin; 2019; 24():101947. PubMed ID: 31376644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replicability of time-varying connectivity patterns in large resting state fMRI samples.
    Abrol A; Damaraju E; Miller RL; Stephen JM; Claus ED; Mayer AR; Calhoun VD
    Neuroimage; 2017 Dec; 163():160-176. PubMed ID: 28916181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.
    Lee K; Lina JM; Gotman J; Grova C
    Neuroimage; 2016 Jul; 134():434-449. PubMed ID: 27046111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating the complementarity of resting-state networks derived from dynamic [
    Ionescu TM; Amend M; Hafiz R; Biswal BB; Wehrl HF; Herfert K; Pichler BJ
    Neuroimage; 2021 Aug; 236():118045. PubMed ID: 33848625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.