These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 301680)

  • 21. Electrophysiological recordings of an extraocular and extrapineal photo-reception in the frog encephalon.
    Cadusseau J; Galand G
    Brain Res; 1981 Aug; 219(2):439-44. PubMed ID: 6973383
    [No Abstract]   [Full Text] [Related]  

  • 22. Electrophysiological study of evoked electrical activity in the pineal gland.
    Pazo JH
    J Neural Transm; 1981; 52(1-2):137-48. PubMed ID: 7288434
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A possible neurophysiological basis for depth perception in frogs: existence of a horopter surface.
    Gaillard F; Galand G
    J Physiol (Paris); 1980; 76(2):123-7. PubMed ID: 6967518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Innervation and central nervous connexions of the frontal organ in Rana temporaria and Rana esculenta. Fiber degeneration after surgical interruption of the pineal nerve].
    Paul E
    Z Zellforsch Mikrosk Anat; 1972; 128(4):504-11. PubMed ID: 4553989
    [No Abstract]   [Full Text] [Related]  

  • 25. The quality of the optic system of the frog's eye (Rana esculenta).
    du Pont JS; de Groot PJ
    Vision Res; 1976; 16(10):1179-81. PubMed ID: 1086025
    [No Abstract]   [Full Text] [Related]  

  • 26. A possible functional relationship between the subcommissural organ and the pineal complex and lateral eyes in Rana esculenta and Rana temporaria.
    Diederen JH
    Cell Tissue Res; 1975; 158(1):37-60. PubMed ID: 1080077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does lateral specialization apply to the frog's brain? An electron microscope observation.
    Kemali M; Guglielmotti V; Gioffré D
    Z Mikrosk Anat Forsch; 1977; 91(4):756-64. PubMed ID: 214968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temporal summation of light by a vertebrate visual receptor.
    Hood DC; Grover BG
    Science; 1974 May; 184(4140):1003-5. PubMed ID: 4545240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A schematic dioptric apparatus for the frog's eye (Rana esculenta).
    du Pont JS; de Groot PJ
    Vision Res; 1976; 16(8):803-10. PubMed ID: 1085524
    [No Abstract]   [Full Text] [Related]  

  • 30. Multiple-unit activity in the pineal gland of the Japanese quail: spontaneous firing and responses to photic stimulations.
    Herbuté S; Baylé JD
    Neuroendocrinology; 1974; 16(1):52-64. PubMed ID: 4444753
    [No Abstract]   [Full Text] [Related]  

  • 31. Cytological and histochemical investigations on the pineal organ of the adult frog (Rana esculenta).
    KELLY DE; va de KAMER JC
    Z Zellforsch Mikrosk Anat; 1960; 52():618-39. PubMed ID: 13752372
    [No Abstract]   [Full Text] [Related]  

  • 32. The potential binocular field and its tectal representation in Rana pipiens.
    Grobstein P; Comer C; Kostyk S
    J Comp Neurol; 1980 Mar; 190(1):175-85. PubMed ID: 6966634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photic input to rat pineal gland conveyed by both sympathetic and central afferents.
    Dafny N
    J Neural Transm; 1980; 48(3):203-8. PubMed ID: 7400809
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of GABA and its antagonists, bicuculline and picrotoxin, on nerve cell discharges of the photosensory pineal organ of the frog, Rana esculenta.
    Meissl H; George SR
    Brain Res; 1985 Apr; 332(1):39-46. PubMed ID: 2986761
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasticity of reactions to light in frogs and a possible role for the pineal eye.
    Mrosovsky N; Tress KH
    Nature; 1966 Jun; 210(5041):1174-5. PubMed ID: 5964185
    [No Abstract]   [Full Text] [Related]  

  • 36. Diencephalic binocular wide field neurons in the frog.
    Gaillard F; Galand G
    Exp Brain Res; 1979 Feb; 34(3):511-20. PubMed ID: 311293
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrophysiological evidence of photic, acoustic, and central input to the pineal body and hypothalamus.
    Dafny N
    Exp Neurol; 1977 May; 55(2):449-57. PubMed ID: 858332
    [No Abstract]   [Full Text] [Related]  

  • 38. [Ultrastructure of light-sensitive pineal sensory apparati].
    Ueck M
    Verh Anat Ges; 1970; 64():321-3. PubMed ID: 5315942
    [No Abstract]   [Full Text] [Related]  

  • 39. Pars intermedia: unitary electrical activity regulated by light.
    Oshima K; Gorbman A
    Science; 1969 Jan; 163(3863):195-7. PubMed ID: 5762769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unit responses in the frog's caudal thalamus.
    Brown WT; Marks WB
    Brain Behav Evol; 1977; 14(4):274-97. PubMed ID: 301420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.