These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30168216)

  • 1. Characterization and effect of metal ions on the formation of the Thermus thermophilus Sco mixed disulfide intermediate.
    Lopez LC; Mukhitov N; Handley LD; Hamme CS; Hofman CR; Euers L; McKinney JR; Piers AD; Wadler E; Hunsicker-Wang LM
    Protein Sci; 2018 Nov; 27(11):1942-1954. PubMed ID: 30168216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DEPC modification of the Cu
    Devlin T; Hofman CR; Acevedo ZPV; Kohler KR; Tao L; Britt RD; Hoke KR; Hunsicker-Wang LM
    J Biol Inorg Chem; 2019 Feb; 24(1):117-135. PubMed ID: 30523412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the redox and metal binding activity of BsSco, a protein implicated in the assembly of cytochrome c oxidase.
    Imriskova-Sosova I; Andrews D; Yam K; Davidson D; Yachnin B; Hill BC
    Biochemistry; 2005 Dec; 44(51):16949-56. PubMed ID: 16363808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arabidopsis thaliana Hcc1 is a Sco-like metallochaperone for Cu
    Llases ME; Lisa MN; Morgada MN; Giannini E; Alzari PM; Vila AJ
    FEBS J; 2020 Feb; 287(4):749-762. PubMed ID: 31348612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable Cu(II) and Cu(I) mononuclear intermediates in the assembly of the CuA center of Thermus thermophilus cytochrome oxidase.
    Chacón KN; Blackburn NJ
    J Am Chem Soc; 2012 Oct; 134(39):16401-12. PubMed ID: 22946616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the surface-exposed leucine 155 in the metal ion binding loop of the CuA domain of cytochrome c oxidase from Thermus thermophilus on the function and stability of the protein.
    Ghosh MK; Rajbongshi J; Basumatary D; Mazumdar S
    Biochemistry; 2012 Mar; 51(12):2443-52. PubMed ID: 22372469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of copper incorporation in subunit II of cytochrome C oxidase from Thermus thermophilus: identification of intermediate species.
    Ghosh MK; Basak P; Mazumdar S
    Biochemistry; 2013 Jul; 52(27):4620-35. PubMed ID: 23745508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PrrC from Rhodobacter sphaeroides, a homologue of eukaryotic Sco proteins, is a copper-binding protein and may have a thiol-disulfide oxidoreductase activity.
    McEwan AG; Lewin A; Davy SL; Boetzel R; Leech A; Walker D; Wood T; Moore GR
    FEBS Lett; 2002 May; 518(1-3):10-6. PubMed ID: 11997009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytochrome oxidase genes from Thermus thermophilus. Nucleotide sequence and analysis of the deduced primary structure of subunit IIc of cytochrome caa3.
    Mather MW; Springer P; Fee JA
    J Biol Chem; 1991 Mar; 266(8):5025-35. PubMed ID: 1848234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermostability of proteins: role of metal binding and pH on the stability of the dinuclear CuA site of Thermus thermophilus.
    Sujak A; Sanghamitra NJ; Maneg O; Ludwig B; Mazumdar S
    Biophys J; 2007 Oct; 93(8):2845-51. PubMed ID: 17604317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential affinity of BsSCO for Cu(II) and Cu(I) suggests a redox role in copper transfer to the Cu(A) center of cytochrome c oxidase.
    Hill BC; Andrews D
    Biochim Biophys Acta; 2012 Jun; 1817(6):948-54. PubMed ID: 21945854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breaking and re-forming the disulfide bond at the high-potential, respiratory-type Rieske [2Fe-2S] center of thermus thermophilus: characterization of the sulfhydryl state by protein-film voltammetry.
    Zu Y; Fee JA; Hirst J
    Biochemistry; 2002 Nov; 41(47):14054-65. PubMed ID: 12437363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loop recognition and copper-mediated disulfide reduction underpin metal site assembly of CuA in human cytochrome oxidase.
    Morgada MN; Abriata LA; Cefaro C; Gajda K; Banci L; Vila AJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11771-6. PubMed ID: 26351686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How periplasmic thioredoxin TlpA reduces bacterial copper chaperone ScoI and cytochrome oxidase subunit II (CoxB) prior to metallation.
    Abicht HK; Schärer MA; Quade N; Ledermann R; Mohorko E; Capitani G; Hennecke H; Glockshuber R
    J Biol Chem; 2014 Nov; 289(47):32431-44. PubMed ID: 25274631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replacement of the active-site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo.
    Zapun A; Cooper L; Creighton TE
    Biochemistry; 1994 Feb; 33(7):1907-14. PubMed ID: 8110795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The CuA domain of Thermus thermophilus ba3-type cytochrome c oxidase at 1.6 A resolution.
    Williams PA; Blackburn NJ; Sanders D; Bellamy H; Stura EA; Fee JA; McRee DE
    Nat Struct Biol; 1999 Jun; 6(6):509-16. PubMed ID: 10360350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-soluble, recombinant CuA-domain of the cytochrome ba3 subunit II from Thermus thermophilus.
    Slutter CE; Sanders D; Wittung P; Malmström BG; Aasa R; Richards JH; Gray HB; Fee JA
    Biochemistry; 1996 Mar; 35(11):3387-95. PubMed ID: 8639488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anatomy of a red copper center: spectroscopic identification and reactivity of the copper centers of Bacillus subtilis Sco and its Cys-to-Ala variants.
    Siluvai GS; Mayfield M; Nilges MJ; Debeer George S; Blackburn NJ
    J Am Chem Soc; 2010 Apr; 132(14):5215-26. PubMed ID: 20232870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of Cu(A) assembly.
    Abriata LA; Banci L; Bertini I; Ciofi-Baffoni S; Gkazonis P; Spyroulias GA; Vila AJ; Wang S
    Nat Chem Biol; 2008 Oct; 4(10):599-601. PubMed ID: 18758441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of cysteine thiol modifications based on protein microenvironments and local secondary structures.
    Bhatnagar A; Bandyopadhyay D
    Proteins; 2018 Feb; 86(2):192-209. PubMed ID: 29139156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.