These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30168634)

  • 1. Paper-Based Antibody Detection Devices Using Bioluminescent BRET-Switching Sensor Proteins.
    Tenda K; van Gerven B; Arts R; Hiruta Y; Merkx M; Citterio D
    Angew Chem Int Ed Engl; 2018 Nov; 57(47):15369-15373. PubMed ID: 30168634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thread-Based Bioluminescent Sensor for Detecting Multiple Antibodies in a Single Drop of Whole Blood.
    Tomimuro K; Tenda K; Ni Y; Hiruta Y; Merkx M; Citterio D
    ACS Sens; 2020 Jun; 5(6):1786-1794. PubMed ID: 32441095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices.
    Yang X; Forouzan O; Brown TP; Shevkoplyas SS
    Lab Chip; 2012 Jan; 12(2):274-80. PubMed ID: 22094609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and characterisation of a compact device for rapid real-time-on-chip detection of thrombin activity in human serum using bioluminescence resonance energy transfer (BRET).
    Weihs F; Gel M; Wang J; Anderson A; Trowell S; Dacres H
    Biosens Bioelectron; 2020 Jun; 158():112162. PubMed ID: 32275213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in low-cost microfluidic platforms for diagnostic applications.
    Tomazelli Coltro WK; Cheng CM; Carrilho E; de Jesus DP
    Electrophoresis; 2014 Aug; 35(16):2309-24. PubMed ID: 24668896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic toner-based analytical devices: disposable, lightweight, and portable platforms for point-of-care diagnostics with colorimetric detection.
    Oliveira KA; de Souza FR; de Oliveira CR; da Silveira LA; Coltro WK
    Methods Mol Biol; 2015; 1256():85-98. PubMed ID: 25626533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wicking microfluidic approach to separate blood plasma from whole blood to facilitate downstream assays.
    Bandara GC; Unitan LJ; Kremer MH; Shellhammer OT; Bracha S; Remcho VT
    Anal Bioanal Chem; 2021 Jul; 413(17):4511-4520. PubMed ID: 34046699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dual colorimetric-electrochemical microfluidic paper-based analytical device for point-of-care testing of ischemic strokes.
    Dortez S; Pacheco M; Gasull T; Crevillen AG; Escarpa A
    Lab Chip; 2024 Sep; 24(18):4253-4263. PubMed ID: 39118539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Paper-Based Analytical Devices for Colorimetric Detection of Lactoferrin.
    Kudo H; Maejima K; Hiruta Y; Citterio D
    SLAS Technol; 2020 Feb; 25(1):47-57. PubMed ID: 31658890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme embedded microfluidic paper-based analytic device (μPAD): a comprehensive review.
    Nadar SS; Patil PD; Tiwari MS; Ahirrao DJ
    Crit Rev Biotechnol; 2021 Nov; 41(7):1046-1080. PubMed ID: 33730940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using the Rubik's Cube to directly produce paper analytical devices for quantitative point-of-care aptamer-based assays.
    Fu H; Yang J; Guo L; Nie J; Yin Q; Zhang L; Zhang Y
    Biosens Bioelectron; 2017 Oct; 96():194-200. PubMed ID: 28499195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a paper-based microfluidic analytical device by a more facile hydrophobic substrate generation strategy.
    Xue YY; Zhang WT; Zhang MY; Liu LZ; Zhu WX; Yan LZ; Wang J; Wang YR; Wang JL; Zhang DH
    Anal Biochem; 2017 May; 525():100-106. PubMed ID: 28263739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - A review.
    Morbioli GG; Mazzu-Nascimento T; Stockton AM; Carrilho E
    Anal Chim Acta; 2017 Jun; 970():1-22. PubMed ID: 28433054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paper-based electrochemiluminescent 3D immunodevice for lab-on-paper, specific, and sensitive point-of-care testing.
    Yan J; Ge L; Song X; Yan M; Ge S; Yu J
    Chemistry; 2012 Apr; 18(16):4938-45. PubMed ID: 22392821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated optical detection of autonomous capillary microfluidic immunoassays:a hand-held point-of-care prototype.
    Novo P; Chu V; Conde JP
    Biosens Bioelectron; 2014 Jul; 57():284-91. PubMed ID: 24607579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleic acid sample preparation from whole blood in a paper microfluidic device using isotachophoresis.
    Sullivan BP; Bender AT; Ngyuen DN; Zhang JY; Posner JD
    J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Jan; 1163():122494. PubMed ID: 33401049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. USB powered microfluidic paper-based analytical devices.
    Schaumburg F; Kler PA; Carrell CS; Berli CLA; Henry CS
    Electrophoresis; 2020 Apr; 41(7-8):562-569. PubMed ID: 31677285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paper Capillary Enables Effective Sampling for Microfluidic Paper Analytical Devices.
    Shangguan JW; Liu Y; Wang S; Hou YX; Xu BY; Xu JJ; Chen HY
    ACS Sens; 2018 Jul; 3(7):1416-1423. PubMed ID: 29873481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in microfluidic paper-based electrochemiluminescence analytical devices for point-of-care testing applications.
    Chinnadayyala SR; Park J; Le HTN; Santhosh M; Kadam AN; Cho S
    Biosens Bioelectron; 2019 Feb; 126():68-81. PubMed ID: 30391911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical Detection in Stacked Paper Networks.
    Liu X; Lillehoj PB
    J Lab Autom; 2015 Aug; 20(4):506-10. PubMed ID: 25732354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.