These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
562 related articles for article (PubMed ID: 30168673)
1. Cucurbit[8]uril-Based Polymers and Polymer Materials. Zou H; Liu J; Li Y; Li X; Wang X Small; 2018 Nov; 14(46):e1802234. PubMed ID: 30168673 [TBL] [Abstract][Full Text] [Related]
2. Cucurbit[8]uril-based supramolecular polymers. Liu Y; Yang H; Wang Z; Zhang X Chem Asian J; 2013 Aug; 8(8):1626-32. PubMed ID: 23589513 [TBL] [Abstract][Full Text] [Related]
3. Cucurbit[8]uril-based supramolecular hydrogels for biomedical applications. Wang Z; Shui M; Wyman IW; Zhang QW; Wang R RSC Med Chem; 2021 May; 12(5):722-729. PubMed ID: 34124671 [TBL] [Abstract][Full Text] [Related]
4. Cucurbit[n]uril-Based Microcapsules Self-Assembled within Microfluidic Droplets: A Versatile Approach for Supramolecular Architectures and Materials. Liu J; Lan Y; Yu Z; Tan CS; Parker RM; Abell C; Scherman OA Acc Chem Res; 2017 Feb; 50(2):208-217. PubMed ID: 28075551 [TBL] [Abstract][Full Text] [Related]
5. Cucurbit[8]uril (CB[8])-Based Supramolecular Switches. Pazos E; Novo P; Peinador C; Kaifer AE; García MD Angew Chem Int Ed Engl; 2019 Jan; 58(2):403-416. PubMed ID: 29978946 [TBL] [Abstract][Full Text] [Related]
6. Cucurbit[6]uril-cucurbit[7]uril heterodimer promotes controlled self-assembly of supramolecular networks and supramolecular micelles by self-sorting of amphiphilic guests. Zhang M; Cao L; Isaacs L Chem Commun (Camb); 2014 Dec; 50(94):14756-9. PubMed ID: 25318021 [TBL] [Abstract][Full Text] [Related]
7. From Packed "Sandwich" to "Russian Doll": Assembly by Charge-Transfer Interactions in Cucurbit[10]uril. Gong W; Yang X; Zavalij PY; Isaacs L; Zhao Z; Liu S Chemistry; 2016 Dec; 22(49):17612-17618. PubMed ID: 27862408 [TBL] [Abstract][Full Text] [Related]
8. Supramolecular cross-linked networks via host-guest complexation with cucurbit[8]uril. Appel EA; Biedermann F; Rauwald U; Jones ST; Zayed JM; Scherman OA J Am Chem Soc; 2010 Oct; 132(40):14251-60. PubMed ID: 20845973 [TBL] [Abstract][Full Text] [Related]
9. Cucurbit[10]uril-Based [2]Rotaxane: Preparation and Supramolecular Assembly-Induced Fluorescence Enhancement. Yu Y; Li Y; Wang X; Nian H; Wang L; Li J; Zhao Y; Yang X; Liu S; Cao L J Org Chem; 2017 Jun; 82(11):5590-5596. PubMed ID: 28486799 [TBL] [Abstract][Full Text] [Related]
10. Temperature-Responsive Supramolecular Hydrogels by Ternary Complex Formation with Subsequent Photo-Cross-linking to Alter Network Dynamics. Zou L; Su B; Addonizio CJ; Pramudya I; Webber MJ Biomacromolecules; 2019 Dec; 20(12):4512-4521. PubMed ID: 31765145 [TBL] [Abstract][Full Text] [Related]
11. Sequential Formation of Heteroternary Cucurbit[10]uril (CB[10]) Complexes. Li C; Manick AD; Zhao Y; Liu F; Chatelet B; Rosas R; Siri D; Gigmes D; Monnier V; Charles L; Broggi J; Liu S; Martinez A; Kermagoret A; Bardelang D Chemistry; 2022 Nov; 28(64):e202201656. PubMed ID: 35980006 [TBL] [Abstract][Full Text] [Related]
12. Engineering living cells with cucurbit[7]uril-based supramolecular polymer chemistry: from cell surface engineering to manipulation of subcellular organelles. Huang F; Liu J; Liu Y Chem Sci; 2022 Aug; 13(30):8885-8894. PubMed ID: 35975152 [TBL] [Abstract][Full Text] [Related]
13. Cucurbit[8]uril mediated donor-acceptor ternary complexes: a model system for studying charge-transfer interactions. Biedermann F; Scherman OA J Phys Chem B; 2012 Mar; 116(9):2842-9. PubMed ID: 22309573 [TBL] [Abstract][Full Text] [Related]
14. Tunable Water-Soluble Supramolecular Polymers by Visible-Light-Regulated Host-Guest Interactions. Jin TT; Zhou XH; Yin YF; Zhan TG; Cui J; Liu LJ; Kong LC; Zhang KD Chem Asian J; 2018 Oct; 13(19):2818-2823. PubMed ID: 29975456 [TBL] [Abstract][Full Text] [Related]
15. Multivalency in Heteroternary Complexes on Cucurbit[8]uril-Functionalized Surfaces: Self-assembly, Patterning, and Exchange Processes. Valderrey V; Wiemann M; Jonkheijm P; Hecht S; Huskens J Chempluschem; 2019 Sep; 84(9):1324-1330. PubMed ID: 31944037 [TBL] [Abstract][Full Text] [Related]
16. Cucurbit[8]uril-Regulated Nanopatterning of Binary Polymer Brushes via Colloidal Templating. Hu C; Lan Y; West KR; Scherman OA Adv Mater; 2015 Dec; 27(48):7957-62. PubMed ID: 26509604 [TBL] [Abstract][Full Text] [Related]
17. Probing the stability of multicomponent self-assembled architectures based on cucurbit[8]uril in the gas phase. Cziferszky M; Biedermann F; Kalberer M; Scherman OA Org Biomol Chem; 2012 Mar; 10(12):2447-52. PubMed ID: 22336996 [TBL] [Abstract][Full Text] [Related]
18. Toward a versatile toolbox for cucurbit[ Liu J; Soo Yun Tan C; Lan Y; Scherman OA J Polym Sci A Polym Chem; 2017 Sep; 55(18):3105-3109. PubMed ID: 28931970 [TBL] [Abstract][Full Text] [Related]
19. Incorporating Bacteria as a Living Component in Supramolecular Self-Assembled Monolayers through Dynamic Nanoscale Interactions. Sankaran S; Kiren MC; Jonkheijm P ACS Nano; 2015; 9(4):3579-86. PubMed ID: 25738514 [TBL] [Abstract][Full Text] [Related]
20. Benzobis(imidazolium)-cucurbit[8]uril complexes for binding and sensing aromatic compounds in aqueous solution. Biedermann F; Rauwald U; Cziferszky M; Williams KA; Gann LD; Guo BY; Urbach AR; Bielawski CW; Scherman OA Chemistry; 2010 Dec; 16(46):13716-22. PubMed ID: 21058380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]