BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30169018)

  • 21. Optical Nanosensor Passivation Enables Highly Sensitive Detection of the Inflammatory Cytokine Interleukin-6.
    Gaikwad P; Rahman N; Parikh R; Crespo J; Cohen Z; Williams RM
    ACS Appl Mater Interfaces; 2024 May; 16(21):27102-27113. PubMed ID: 38745465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Association of the circulating levels of the urokinase system of plasminogen activation with the presence of prostate cancer and invasion, progression, and metastasis.
    Shariat SF; Roehrborn CG; McConnell JD; Park S; Alam N; Wheeler TM; Slawin KM
    J Clin Oncol; 2007 Feb; 25(4):349-55. PubMed ID: 17264329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A rapid, direct, quantitative, and label-free detector of cardiac biomarker troponin T using near-infrared fluorescent single-walled carbon nanotube sensors.
    Zhang J; Kruss S; Hilmer AJ; Shimizu S; Schmois Z; De La Cruz F; Barone PW; Reuel NF; Heller DA; Strano MS
    Adv Healthc Mater; 2014 Mar; 3(3):412-23. PubMed ID: 23966175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A convenient method of attaching fluorescent dyes on single-walled carbon nanotubes pre-wrapped with DNA molecules.
    Tomura A; Umemura K
    Anal Biochem; 2018 Apr; 547():1-6. PubMed ID: 29428378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The surface of prostate carcinoma DU145 cells mediates the inhibition of urokinase-type plasminogen activator by maspin.
    McGowen R; Biliran H; Sager R; Sheng S
    Cancer Res; 2000 Sep; 60(17):4771-8. PubMed ID: 10987285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers.
    Lerner MB; D'Souza J; Pazina T; Dailey J; Goldsmith BR; Robinson MK; Johnson AT
    ACS Nano; 2012 Jun; 6(6):5143-9. PubMed ID: 22575126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comprehensive studies on the nature of interaction between carboxylated multi-walled carbon nanotubes and bovine serum albumin.
    Lou K; Zhu Z; Zhang H; Wang Y; Wang X; Cao J
    Chem Biol Interact; 2016 Jan; 243():54-61. PubMed ID: 26626329
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical Etching of Bovine Serum Albumin-Protected Au25 Nanoclusters for Label-Free and Separation-Free Ratiometric Fluorescent Detection of Tris(2-carboxyethyl)phosphine.
    Shu T; Wang J; Su L; Zhang X
    Anal Chem; 2016 Nov; 88(22):11193-11198. PubMed ID: 27775340
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hybrid carbon nanotubes modified glassy carbon electrode for selective, sensitive and simultaneous detection of dopamine and uric acid.
    Guan JF; Zou J; Liu YP; Jiang XY; Yu JG
    Ecotoxicol Environ Saf; 2020 Sep; 201():110872. PubMed ID: 32559693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors.
    Kruss S; Landry MP; Vander Ende E; Lima BM; Reuel NF; Zhang J; Nelson J; Mu B; Hilmer A; Strano M
    J Am Chem Soc; 2014 Jan; 136(2):713-24. PubMed ID: 24354436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorescence Detection of p-Nitrophenol in Water Using Bovine Serum Albumin Capped ag Nanoclusters.
    Mao M; Deng C; He Y; Ge Y; Song G
    J Fluoresc; 2017 Jul; 27(4):1421-1426. PubMed ID: 28401411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pericellular proteolysis by leukocytes and tumor cells on substrates: focal activation and the role of urokinase-type plasminogen activator.
    Kindzelskii AL; Amhad I; Keller D; Zhou MJ; Haugland RP; Garni-Wagner BA; Gyetko MR; Todd RF; Petty HR
    Histochem Cell Biol; 2004 Apr; 121(4):299-310. PubMed ID: 15042374
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and synthesis of a near-infrared fluorescent nanofiber precursor for detecting cell-secreted urokinase activity.
    Malik R; Qian S; Law B
    Anal Biochem; 2011 May; 412(1):26-33. PubMed ID: 21237128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: design, fluorophore properties, advantages, and disadvantages.
    Barone PW; Parker RS; Strano MS
    Anal Chem; 2005 Dec; 77(23):7556-62. PubMed ID: 16316162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monitoring of chemotherapy successfulness of platina/taxol chemotherapy protocol by using determination of serum urokinase plasminogen activator (uPA) and soluble urokinase plasminogen activator receptor (suPAR) in patients with ovarian carcinoma FIGO II and III stage.
    Ljuca D; Fatusić Z; Iljazović E; Ahmetović B
    Bosn J Basic Med Sci; 2007 May; 7(2):111-6. PubMed ID: 17489744
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecularly imprinted polymer based on MWCNT-QDs as fluorescent biomimetic sensor for specific recognition of target protein.
    Ding Z; Annie Bligh SW; Tao L; Quan J; Nie H; Zhu L; Gong X
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():469-79. PubMed ID: 25579948
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A simple and rapid fluorescent approach for flavonoids sensor based on gold nanoclusters.
    Peng J; Su Y; Huang FQ; Zuo Q; Yang L; Li J; Zhao L; Qi LW
    J Colloid Interface Sci; 2019 Mar; 539():175-183. PubMed ID: 30580173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Imaging active urokinase plasminogen activator in prostate cancer.
    LeBeau AM; Sevillano N; Markham K; Winter MB; Murphy ST; Hostetter DR; West J; Lowman H; Craik CS; VanBrocklin HF
    Cancer Res; 2015 Apr; 75(7):1225-35. PubMed ID: 25672980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New insight into the binding interaction of hydroxylated carbon nanotubes with bovine serum albumin.
    Guan Y; Zhang H; Wang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():556-63. PubMed ID: 24508894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Near-Infrared Imaging of Serotonin Release from Cells with Fluorescent Nanosensors.
    Dinarvand M; Neubert E; Meyer D; Selvaggio G; Mann FA; Erpenbeck L; Kruss S
    Nano Lett; 2019 Sep; 19(9):6604-6611. PubMed ID: 31418577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.