These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 30169020)
21. Responses of growth inhibition and antioxidant gene expression in earthworms (Eisenia fetida) exposed to tetrabromobisphenol A, hexabromocyclododecane and decabromodiphenyl ether. Shi YJ; Xu XB; Zheng XQ; Lu YL Comp Biochem Physiol C Toxicol Pharmacol; 2015; 174-175():32-8. PubMed ID: 26117064 [TBL] [Abstract][Full Text] [Related]
22. A review on human exposure to brominated flame retardants--particularly polybrominated diphenyl ethers. Sjödin A; Patterson DG; Bergman A Environ Int; 2003 Sep; 29(6):829-39. PubMed ID: 12850099 [TBL] [Abstract][Full Text] [Related]
23. A national survey of tetrabromobisphenol-A, hexabromocyclododecane and decabrominated diphenyl ether in human milk from China: Occurrence and exposure assessment. Shi Z; Zhang L; Zhao Y; Sun Z; Zhou X; Li J; Wu Y Sci Total Environ; 2017 Dec; 599-600():237-245. PubMed ID: 28477480 [TBL] [Abstract][Full Text] [Related]
24. Biodegradation kinetics of selected brominated flame retardants in aerobic and anaerobic soil. Nyholm JR; Lundberg C; Andersson PL Environ Pollut; 2010 Jun; 158(6):2235-40. PubMed ID: 20227803 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of the effect of brominated flame retardants on hemoglobin oxidation and hemolysis in human erythrocytes. Jarosiewicz M; Duchnowicz P; Włuka A; Bukowska B Food Chem Toxicol; 2017 Nov; 109(Pt 1):264-271. PubMed ID: 28893619 [TBL] [Abstract][Full Text] [Related]
27. Polymeric brominated flame retardants: are they a relevant source of emerging brominated aromatic compounds in the environment? Gouteux B; Alaee M; Mabury SA; Pacepavicius G; Muir DC Environ Sci Technol; 2008 Dec; 42(24):9039-44. PubMed ID: 19174868 [TBL] [Abstract][Full Text] [Related]
28. A review of the environmental distribution, fate, and control of tetrabromobisphenol A released from sources. Malkoske T; Tang Y; Xu W; Yu S; Wang H Sci Total Environ; 2016 Nov; 569-570():1608-1617. PubMed ID: 27325014 [TBL] [Abstract][Full Text] [Related]
29. Characterization of brominated flame retardants from e-waste components in China. Yu D; Duan H; Song Q; Liu Y; Li Y; Li J; Shen W; Luo J; Wang J Waste Manag; 2017 Oct; 68():498-507. PubMed ID: 28756124 [TBL] [Abstract][Full Text] [Related]
30. TG-MS investigation of brominated products from the degradation of brominated flame retardants in high-impact polystyrene. Grause G; Karakita D; Ishibashi J; Kameda T; Bhaskar T; Yoshioka T Chemosphere; 2011 Oct; 85(3):368-73. PubMed ID: 21764419 [TBL] [Abstract][Full Text] [Related]
31. In vitro effects of brominated flame retardants and metabolites on CYP17 catalytic activity: a novel mechanism of action? Cantón RF; Sanderson JT; Nijmeijer S; Bergman A; Letcher RJ; van den Berg M Toxicol Appl Pharmacol; 2006 Oct; 216(2):274-81. PubMed ID: 16828825 [TBL] [Abstract][Full Text] [Related]
32. Phototransformation of tetrabromobisphenol A in saline water under simulated sunlight irradiation. Feng X; Wei J; Hu X; Liu B; Yang C; Yang J Chemosphere; 2022 Mar; 291(Pt 1):132697. PubMed ID: 34715098 [TBL] [Abstract][Full Text] [Related]
33. Polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and "novel" brominated flame retardants in house dust in Germany. Fromme H; Hilger B; Kopp E; Miserok M; Völkel W Environ Int; 2014 Mar; 64():61-8. PubMed ID: 24368294 [TBL] [Abstract][Full Text] [Related]
34. Anaerobic degradation of brominated flame retardants in sewage sludge. Gerecke AC; Giger W; Hartmann PC; Heeb NV; Kohler HP; Schmid P; Zennegg M; Kohler M Chemosphere; 2006 Jun; 64(2):311-7. PubMed ID: 16442150 [TBL] [Abstract][Full Text] [Related]
35. Molecular mechanisms and tissue targets of brominated flame retardants, BDE-47 and TBBPA, in embryo-larval life stages of zebrafish (Danio rerio). Parsons A; Lange A; Hutchinson TH; Miyagawa S; Iguchi T; Kudoh T; Tyler CR Aquat Toxicol; 2019 Apr; 209():99-112. PubMed ID: 30763833 [TBL] [Abstract][Full Text] [Related]
36. Leaching of brominated flame retardants in leachate from landfills in Japan. Osako M; Kim YJ; Sakai S Chemosphere; 2004 Dec; 57(10):1571-9. PubMed ID: 15519402 [TBL] [Abstract][Full Text] [Related]
37. Extruded polystyrene microplastics as a source of brominated flame retardant additives in the marine environment: long-term field and laboratory experiments. Barhoumi B; Metian M; Oberhaensli F; Mourgkogiannis N; Karapanagioti HK; Bersuder P; Tolosa I Environ Int; 2023 Feb; 172():107797. PubMed ID: 36773563 [TBL] [Abstract][Full Text] [Related]
38. Legacy and novel brominated flame retardants in indoor dust from Beijing, China: Occurrence, human exposure assessment and evidence for PBDEs replacement. Wang J; Wang Y; Shi Z; Zhou X; Sun Z Sci Total Environ; 2018 Mar; 618():48-59. PubMed ID: 29126026 [TBL] [Abstract][Full Text] [Related]
39. Evaluation of the Effect of Selected Brominated Flame Retardants on Human Serum Albumin and Human Erythrocyte Membrane Proteins. Jarosiewicz M; Miłowska K; Krokosz A; Bukowska B Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32486253 [TBL] [Abstract][Full Text] [Related]
40. Analysis of brominated flame retardants in house dust. Abb M; Stahl B; Lorenz W Chemosphere; 2011 Dec; 85(11):1657-63. PubMed ID: 21724229 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]