These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30169062)

  • 1. Probing the Spatiotemporal Dynamics of Catalytic Janus Particles with Single-Particle Tracking and Differential Dynamic Microscopy.
    Kurzthaler C; Devailly C; Arlt J; Franosch T; Poon WCK; Martinez VA; Brown AT
    Phys Rev Lett; 2018 Aug; 121(7):078001. PubMed ID: 30169062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active Brownian particle in homogeneous media of different viscosities: numerical simulations.
    Lisin EA; Vaulina OS; Lisina II; Petrov OF
    Phys Chem Chem Phys; 2021 Aug; 23(30):16248-16257. PubMed ID: 34308937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional Brownian motion of anisotropic dimers.
    Mayer DB; Sarmiento-Gómez E; Escobedo-Sánchez MA; Segovia-Gutiérrez JP; Kurzthaler C; Egelhaaf SU; Franosch T
    Phys Rev E; 2021 Jul; 104(1-1):014605. PubMed ID: 34412330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermediate scattering function of an anisotropic active Brownian particle.
    Kurzthaler C; Leitmann S; Franosch T
    Sci Rep; 2016 Oct; 6():36702. PubMed ID: 27830719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermediate scattering function of an anisotropic Brownian circle swimmer.
    Kurzthaler C; Franosch T
    Soft Matter; 2017 Sep; 13(37):6396-6406. PubMed ID: 28872170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotational Analysis of Spherical, Optically Anisotropic Janus Particles by Dynamic Microscopy.
    Wittmeier A; Holterhoff AL; Johnson J; Gibbs JG
    Langmuir; 2015 Sep; 31(38):10402-10. PubMed ID: 26352095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brownian motion of a self-propelled particle.
    ten Hagen B; van Teeffelen S; Löwen H
    J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotational diffusion of partially wetted colloids at fluid interfaces.
    Stocco A; Chollet B; Wang X; Blanc C; Nobili M
    J Colloid Interface Sci; 2019 Apr; 542():363-369. PubMed ID: 30769259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotational and translational drags of a Janus particle close to a wall and a lipid membrane.
    Sharma V; Fessler F; Thalmann F; Marques CM; Stocco A
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):2159-2166. PubMed ID: 37713952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wetting and orientation of catalytic Janus colloids at the surface of water.
    Wang X; In M; Blanc C; Malgaretti P; Nobili M; Stocco A
    Faraday Discuss; 2016 Oct; 191():305-324. PubMed ID: 27412240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced active motion of Janus colloids at the water surface.
    Wang X; In M; Blanc C; Nobili M; Stocco A
    Soft Matter; 2015 Oct; 11(37):7376-84. PubMed ID: 26268395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active Brownian Motion with Orientation-Dependent Motility: Theory and Experiments.
    Sprenger AR; Fernandez-Rodriguez MA; Alvarez L; Isa L; Wittkowski R; Löwen H
    Langmuir; 2020 Jun; 36(25):7066-7073. PubMed ID: 31975603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roughness induced rotational slowdown near the colloidal glass transition.
    Ilhan B; Mugele F; Duits MHG
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1709-1716. PubMed ID: 34592556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symmetrical Catalytic Colloids Display Janus-Like Active Brownian Particle Motion.
    Archer RJ; Ebbens SJ
    Adv Sci (Weinh); 2023 Nov; 10(33):e2303154. PubMed ID: 37870200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Gaussian statistics for the motion of self-propelled Janus particles: experiment versus theory.
    Zheng X; Ten Hagen B; Kaiser A; Wu M; Cui H; Silber-Li Z; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032304. PubMed ID: 24125265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous characterization of rotational and translational diffusion of optically anisotropic particles by optical microscopy.
    Giavazzi F; Haro-Pérez C; Cerbino R
    J Phys Condens Matter; 2016 May; 28(19):195201. PubMed ID: 27093398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamically crowded solutions of infinitely thin Brownian needles.
    Leitmann S; Höfling F; Franosch T
    Phys Rev E; 2017 Jul; 96(1-1):012118. PubMed ID: 29347251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental system for one-dimensional rotational brownian motion.
    McNaughton BH; Kinnunen P; Shlomi M; Cionca C; Pei SN; Clarke R; Argyrakis P; Kopelman R
    J Phys Chem B; 2011 May; 115(18):5212-8. PubMed ID: 21500841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion of a self-propelled particle with rotational inertia.
    Lisin EA; Vaulina OS; Lisina II; Petrov OF
    Phys Chem Chem Phys; 2022 Jun; 24(23):14150-14158. PubMed ID: 35648110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Self-Viscosity and Temperature-Compensated Technique for Highly Stable and Highly Sensitive Bead-Based Diffusometry.
    Chen WL; Chuang HS
    Biosensors (Basel); 2022 May; 12(6):. PubMed ID: 35735510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.