These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30169064)

  • 1. From Kinetic Instability to Bose-Einstein Condensation and Magnon Supercurrents.
    Kreil AJE; Bozhko DA; Musiienko-Shmarova HY; Vasyuchka VI; L'vov VS; Pomyalov A; Hillebrands B; Serga AA
    Phys Rev Lett; 2018 Aug; 121(7):077203. PubMed ID: 30169064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bottleneck Accumulation of Hybrid Magnetoelastic Bosons.
    Bozhko DA; Clausen P; Melkov GA; L'vov VS; Pomyalov A; Vasyuchka VI; Chumak AV; Hillebrands B; Serga AA
    Phys Rev Lett; 2017 Jun; 118(23):237201. PubMed ID: 28644646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation-Enhanced Interaction of a Bose-Einstein Condensate with Parametric Magnon Pairs and Virtual Magnons.
    L'vov VS; Pomyalov A; Bozhko DA; Hillebrands B; Serga AA
    Phys Rev Lett; 2023 Oct; 131(15):156705. PubMed ID: 37897789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping.
    Demokritov SO; Demidov VE; Dzyapko O; Melkov GA; Serga AA; Hillebrands B; Slavin AN
    Nature; 2006 Sep; 443(7110):430-3. PubMed ID: 17006509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bose-Einstein condensation in an ultra-hot gas of pumped magnons.
    Serga AA; Tiberkevich VS; Sandweg CW; Vasyuchka VI; Bozhko DA; Chumak AV; Neumann T; Obry B; Melkov GA; Slavin AN; Hillebrands B
    Nat Commun; 2014 Mar; 5():3452. PubMed ID: 24613901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bose-Einstein condensation of spin wave quanta at room temperature.
    Dzyapko O; Demidov VE; Melkov GA; Demokritov SO
    Philos Trans A Math Phys Eng Sci; 2011 Sep; 369(1951):3575-87. PubMed ID: 21859722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of Bose-Einstein condensates of hot magnons in yttrium iron garnet films.
    Tupitsyn IS; Stamp PC; Burin AL
    Phys Rev Lett; 2008 Jun; 100(25):257202. PubMed ID: 18643698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rayleigh-Jeans Condensation of Pumped Magnons in Thin-Film Ferromagnets.
    Rückriegel A; Kopietz P
    Phys Rev Lett; 2015 Oct; 115(15):157203. PubMed ID: 26550749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase diagram for magnon condensate in Yttrium Iron Garnet film.
    Li F; Saslow WM; Pokrovsky VL
    Sci Rep; 2013; 3():1372. PubMed ID: 23455849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bogoliubov waves and distant transport of magnon condensate at room temperature.
    Bozhko DA; Kreil AJE; Musiienko-Shmarova HY; Serga AA; Pomyalov A; L'vov VS; Hillebrands B
    Nat Commun; 2019 Jun; 10(1):2460. PubMed ID: 31165731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of spontaneous coherence in Bose-Einstein condensate of magnons.
    Demidov VE; Dzyapko O; Demokritov SO; Melkov GA; Slavin AN
    Phys Rev Lett; 2008 Feb; 100(4):047205. PubMed ID: 18352327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnon Bose-Einstein condensation and spin superfluidity.
    Bunkov YM; Volovik GE
    J Phys Condens Matter; 2010 Apr; 22(16):164210. PubMed ID: 21386416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bose-Einstein condensation of magnons under incoherent pumping.
    Chumak AV; Melkov GA; Demidov VE; Dzyapko O; Safonov VL; Demokritov SO
    Phys Rev Lett; 2009 May; 102(18):187205. PubMed ID: 19518909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial separation of degenerate components of magnon Bose-Einstein condensate by using a local acceleration potential.
    Borisenko IV; Demidov VE; Pokrovsky VL; Demokritov SO
    Sci Rep; 2020 Sep; 10(1):14881. PubMed ID: 32913199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilizing Mechanism for Bose-Einstein Condensation of Interacting Magnons in Ferrimagnets and Ferromagnets.
    Arakawa N
    Phys Rev Lett; 2018 Nov; 121(18):187202. PubMed ID: 30444403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of the Bose-Einstein Condensation of Magnons by the Spin Hall Effect.
    Schneider M; Breitbach D; Serha RO; Wang Q; Serga AA; Slavin AN; Tiberkevich VS; Heinz B; Lägel B; Brächer T; Dubs C; Knauer S; Dobrovolskiy OV; Pirro P; Hillebrands B; Chumak AV
    Phys Rev Lett; 2021 Dec; 127(23):237203. PubMed ID: 34936781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Condensing Magnons in a Degenerate Ferromagnetic Spinor Bose Gas.
    Fang F; Olf R; Wu S; Kadau H; Stamper-Kurn DM
    Phys Rev Lett; 2016 Mar; 116(9):095301. PubMed ID: 26991184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory of Bose-Einstein condensation in a microwave-driven interacting magnon gas.
    Rezende SM
    J Phys Condens Matter; 2010 Apr; 22(16):164211. PubMed ID: 21386417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnon kinetics and Bose-Einstein condensation studied in phase space.
    Demidov VE; Dzyapko O; Buchmeier M; Stockhoff T; Schmitz G; Melkov GA; Demokritov SO
    Phys Rev Lett; 2008 Dec; 101(25):257201. PubMed ID: 19113748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitations from a Bose-Einstein condensate of magnons in coupled spin ladders.
    Garlea VO; Zheludev A; Masuda T; Manaka H; Regnault LP; Ressouche E; Grenier B; Chung JH; Qiu Y; Habicht K; Kiefer K; Boehm M
    Phys Rev Lett; 2007 Apr; 98(16):167202. PubMed ID: 17501456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.