These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Structure of resonance eigenfunctions for chaotic systems with partial escape. Clauß K; Altmann EG; Bäcker A; Ketzmerick R Phys Rev E; 2019 Nov; 100(5-1):052205. PubMed ID: 31869968 [TBL] [Abstract][Full Text] [Related]
3. Localization in chaotic systems with a single-channel opening. Lippolis D; Ryu JW; Kim SW Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012921. PubMed ID: 26274261 [TBL] [Abstract][Full Text] [Related]
4. Semiclassical structure of chaotic resonance eigenfunctions. Keating JP; Novaes M; Prado SD; Sieber M Phys Rev Lett; 2006 Oct; 97(15):150406. PubMed ID: 17155305 [TBL] [Abstract][Full Text] [Related]
5. Localization of Chaotic Resonance States due to a Partial Transport Barrier. Körber MJ; Bäcker A; Ketzmerick R Phys Rev Lett; 2015 Dec; 115(25):254101. PubMed ID: 26722923 [TBL] [Abstract][Full Text] [Related]
6. Characterization of random features of chaotic eigenfunctions in unperturbed basis. Wang J; Wang WG Phys Rev E; 2018 Jun; 97(6-1):062219. PubMed ID: 30011441 [TBL] [Abstract][Full Text] [Related]
7. Eigenstates ignoring regular and chaotic phase-space structures. Hufnagel L; Ketzmerick R; Otto MF; Schanz H Phys Rev Lett; 2002 Oct; 89(15):154101. PubMed ID: 12365989 [TBL] [Abstract][Full Text] [Related]
8. Phase space localization of chaotic eigenstates: violating ergodicity. Lakshminarayan A; Cerruti NR; Tomsovic S Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016209. PubMed ID: 11304337 [TBL] [Abstract][Full Text] [Related]
9. Assignment and extracting dynamics from experimentally and theoretically obtained spectroscopic hamiltonians in the complex spectral and classically chaotic regions. Jung C; Taylor HS J Phys Chem A; 2007 Apr; 111(16):3047-68. PubMed ID: 17388400 [TBL] [Abstract][Full Text] [Related]
10. Dynamical localization in chaotic systems: spectral statistics and localization measure in the kicked rotator as a paradigm for time-dependent and time-independent systems. Manos T; Robnik M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062905. PubMed ID: 23848746 [TBL] [Abstract][Full Text] [Related]
11. Statistical description of eigenfunctions in chaotic and weakly disordered systems beyond universality. Urbina JD; Richter K Phys Rev Lett; 2006 Nov; 97(21):214101. PubMed ID: 17155745 [TBL] [Abstract][Full Text] [Related]
12. Poincaré recurrences from the perspective of transient chaos. Altmann EG; Tél T Phys Rev Lett; 2008 May; 100(17):174101. PubMed ID: 18518290 [TBL] [Abstract][Full Text] [Related]
13. Statistical properties of the localization measure in a finite-dimensional model of the quantum kicked rotator. Manos T; Robnik M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042904. PubMed ID: 25974559 [TBL] [Abstract][Full Text] [Related]
14. Semiclassical accuracy in phase space for regular and chaotic dynamics. Kaplan L Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026223. PubMed ID: 15447581 [TBL] [Abstract][Full Text] [Related]
15. Nonperturbative and perturbative parts of energy eigenfunctions: a three-orbital schematic shell model. Wang WG Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036219. PubMed ID: 11909224 [TBL] [Abstract][Full Text] [Related]
16. Quantum dephasing and decay of classical correlation functions in chaotic systems. Sokolov VV; Benenti G; Casati G Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026213. PubMed ID: 17358411 [TBL] [Abstract][Full Text] [Related]
17. Semiclassical theory for decay and fragmentation processes in chaotic quantum systems. Gutiérrez M; Waltner D; Kuipers J; Richter K Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046212. PubMed ID: 19518317 [TBL] [Abstract][Full Text] [Related]
18. Transmission phase of a quantum dot and statistical fluctuations of partial-width amplitudes. Jalabert RA; Weick G; Weidenmüller HA; Weinmann D Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052911. PubMed ID: 25353865 [TBL] [Abstract][Full Text] [Related]
19. Symmetry of quantum phase space in a degenerate Hamiltonian system. Berman GP; Demikhovskii VY; Kamenev DI Chaos; 2000 Sep; 10(3):670-675. PubMed ID: 12779416 [TBL] [Abstract][Full Text] [Related]
20. Chaotic saddles in a gravitational field: the case of inertial particles in finite domains. Drótos G; Tél T Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056203. PubMed ID: 21728626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]