These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 30169128)
1. The effect of gram-positive (Desulfosporosinus orientis) and gram-negative (Desulfovibrio desulfuricans) sulfate-reducing bacteria on iron sulfide mineral precipitation. Stanley W; Southam G Can J Microbiol; 2018 Sep; 64(9):629-637. PubMed ID: 30169128 [TBL] [Abstract][Full Text] [Related]
2. The toxicity of lead to Desulfovibrio desulfuricans G20 in the presence of goethite and quartz. Sani RK; Rastogi G; Moberly JG; Dohnalkova A; Ginn TR; Spycher N; Shende RV; Peyton BM J Basic Microbiol; 2010 Apr; 50(2):160-70. PubMed ID: 20082378 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of Sulfate Reduction and Cell Division by Desulfovibrio desulfuricans Coated in Palladium Metal. Barnes RJ; Voegtlin SP; Naik SR; Gomes R; Hubert CRJ; Larter SR; Bryant SL Appl Environ Microbiol; 2022 Jun; 88(12):e0058022. PubMed ID: 35638843 [TBL] [Abstract][Full Text] [Related]
4. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms. Zuo R; Wood TK Appl Microbiol Biotechnol; 2004 Nov; 65(6):747-53. PubMed ID: 15278311 [TBL] [Abstract][Full Text] [Related]
5. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium. Liu D; Dong H; Bishop ME; Zhang J; Wang H; Xie S; Wang S; Huang L; Eberl DD Geobiology; 2012 Mar; 10(2):150-62. PubMed ID: 22074236 [TBL] [Abstract][Full Text] [Related]
7. Effect of sulfide, selenite and mercuric mercury on the growth and methylation capacity of the sulfate reducing bacterium Desulfovibrio desulfuricans. Truong HY; Chen YW; Belzile N Sci Total Environ; 2013 Apr; 449():373-84. PubMed ID: 23454698 [TBL] [Abstract][Full Text] [Related]
8. Understanding the response of Desulfovibrio desulfuricans ATCC 27774 to the electron acceptors nitrate and sulfate - biosynthetic costs modulate substrate selection. Sousa JR; Silveira CM; Fontes P; Roma-Rodrigues C; Fernandes AR; Van Driessche G; Devreese B; Moura I; Moura JJG; Almeida MG Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1455-1469. PubMed ID: 28847524 [TBL] [Abstract][Full Text] [Related]
9. Assessment of the tolerance to Fe, Cu and Zn of a sulfidogenic sludge generated from hydrothermal vents sediments as a basis for its application on metals precipitation. Jan-Roblero J; Cancino-Díaz JC; García-Mena J; Nirmalkar K; Zárate-Segura P; Ordaz A; Guerrero-Barajas C Mol Biol Rep; 2020 Aug; 47(8):6165-6177. PubMed ID: 32749633 [TBL] [Abstract][Full Text] [Related]
10. Growth-promoting effects of the hydrogen-sulfide compounds produced by Desulfovibrio desulfuricans subsp. desulfuricans co-cultured with Escherichia coli (DH5α) on the growth of Entamoeba and Endolimax species isolates from swine. Yoshida N; Kobayashi S; Suzuki J; Azuma Y; Kobayashi-Ogata N; Kartikasari DP; Yanagawa Y; Iwata S Biosci Trends; 2019 Nov; 13(5):402-410. PubMed ID: 31597818 [TBL] [Abstract][Full Text] [Related]
11. Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Gilmour CC; Elias DA; Kucken AM; Brown SD; Palumbo AV; Schadt CW; Wall JD Appl Environ Microbiol; 2011 Jun; 77(12):3938-51. PubMed ID: 21515733 [TBL] [Abstract][Full Text] [Related]
12. Heavy metal and sulfate removal from sulfate-rich synthetic mine drainages using sulfate reducing bacteria. Hwang SK; Jho EH Sci Total Environ; 2018 Sep; 635():1308-1316. PubMed ID: 29710584 [TBL] [Abstract][Full Text] [Related]
13. Reduction of uranium by Desulfovibrio desulfuricans. Lovley DR; Phillips EJ Appl Environ Microbiol; 1992 Mar; 58(3):850-6. PubMed ID: 1575486 [TBL] [Abstract][Full Text] [Related]
14. Changes in the nitrocellulose molecule induced by sulfate-reducing bacteria Desulfovibrio desulfuricans 1,388. The enzymes participating in this process. Tarasova NB; Petrova OE; Davydova MN; Khairutdinov BI; Klochkov VV Biochemistry (Mosc); 2004 Jul; 69(7):809-12. PubMed ID: 15310283 [TBL] [Abstract][Full Text] [Related]
15. Rapid pyritization in the presence of a sulfur/sulfate-reducing bacterial consortium. Berg JS; Duverger A; Cordier L; Laberty-Robert C; Guyot F; Miot J Sci Rep; 2020 May; 10(1):8264. PubMed ID: 32427954 [TBL] [Abstract][Full Text] [Related]
16. Formation of Fe-sulfides in cultures of sulfate-reducing bacteria. Gramp JP; Bigham JM; Jones FS; Tuovinen OH J Hazard Mater; 2010 Mar; 175(1-3):1062-7. PubMed ID: 19962824 [TBL] [Abstract][Full Text] [Related]
17. Effect of NO2(-) on stable isotope fractionation during bacterial sulfate reduction. Einsiedl F Environ Sci Technol; 2009 Jan; 43(1):82-7. PubMed ID: 19209588 [TBL] [Abstract][Full Text] [Related]
18. Isolation of highly performant sulfate reducers from sulfate-rich environments. Hiligsmann S; Jacques P; Thonart P Biodegradation; 1998; 9(3-4):285-92. PubMed ID: 10022071 [TBL] [Abstract][Full Text] [Related]
19. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria. Lin S; Krause F; Voordouw G Appl Microbiol Biotechnol; 2009 May; 83(2):369-76. PubMed ID: 19290520 [TBL] [Abstract][Full Text] [Related]