BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30169132)

  • 1. Sex-specific differences in primary neonatal murine lung fibroblasts exposed to hyperoxia in vitro: implications for bronchopulmonary dysplasia.
    Balaji S; Dong X; Li H; Zhang Y; Steen E; Lingappan K
    Physiol Genomics; 2018 Nov; 50(11):940-946. PubMed ID: 30169132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulmonary endothelial cells exhibit sexual dimorphism in their response to hyperoxia.
    Zhang Y; Dong X; Shirazi J; Gleghorn JP; Lingappan K
    Am J Physiol Heart Circ Physiol; 2018 Nov; 315(5):H1287-H1292. PubMed ID: 30095998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-dimensional human model of the fibroblast activation that accompanies bronchopulmonary dysplasia identifies Notch-mediated pathophysiology.
    Sucre JM; Wilkinson D; Vijayaraj P; Paul M; Dunn B; Alva-Ornelas JA; Gomperts BN
    Am J Physiol Lung Cell Mol Physiol; 2016 May; 310(10):L889-98. PubMed ID: 26968771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA-30a as a candidate underlying sex-specific differences in neonatal hyperoxic lung injury: implications for BPD.
    Zhang Y; Coarfa C; Dong X; Jiang W; Hayward-Piatkovskyi B; Gleghorn JP; Lingappan K
    Am J Physiol Lung Cell Mol Physiol; 2019 Jan; 316(1):L144-L156. PubMed ID: 30382766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of microRNA-30a and sex-specific effects on the neonatal hyperoxic lung injury.
    Grimm SL; Reddick S; Dong X; Leek C; Wang AX; Gutierrez MC; Hartig SM; Moorthy B; Coarfa C; Lingappan K
    Biol Sex Differ; 2023 Aug; 14(1):50. PubMed ID: 37553579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Posttranslational modification of β-catenin is associated with pathogenic fibroblastic changes in bronchopulmonary dysplasia.
    Sucre JM; Vijayaraj P; Aros CJ; Wilkinson D; Paul M; Dunn B; Guttentag SH; Gomperts BN
    Am J Physiol Lung Cell Mol Physiol; 2017 Feb; 312(2):L186-L195. PubMed ID: 27941077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sex-specific differences in neonatal hyperoxic lung injury.
    Lingappan K; Jiang W; Wang L; Moorthy B
    Am J Physiol Lung Cell Mol Physiol; 2016 Aug; 311(2):L481-93. PubMed ID: 27343189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelial to mesenchymal transition during neonatal hyperoxia-induced pulmonary hypertension.
    Gong J; Feng Z; Peterson AL; Carr JF; Vang A; Braza J; Choudhary G; Dennery PA; Yao H
    J Pathol; 2020 Dec; 252(4):411-422. PubMed ID: 32815166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotypic assessment of pulmonary hypertension using high-resolution echocardiography is feasible in neonatal mice with experimental bronchopulmonary dysplasia and pulmonary hypertension: a step toward preventing chronic obstructive pulmonary disease.
    Reynolds CL; Zhang S; Shrestha AK; Barrios R; Shivanna B
    Int J Chron Obstruct Pulmon Dis; 2016; 11():1597-605. PubMed ID: 27478373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sex-specific differences in the modulation of Growth Differentiation Factor 15 (GDF15) by hyperoxia in vivo and in vitro: Role of Hif-1α.
    Zhang Y; Jiang W; Wang L; Lingappan K
    Toxicol Appl Pharmacol; 2017 Oct; 332():8-14. PubMed ID: 28734801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell Division Cycle 2 Protects Neonatal Rats Against Hyperoxia-Induced Bronchopulmonary Dysplasia.
    Li Z; Chen Y; Li W; Yan F
    Yonsei Med J; 2020 Aug; 61(8):679-688. PubMed ID: 32734731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced platelet-derived growth factor receptor expression is a primary feature of human bronchopulmonary dysplasia.
    Popova AP; Bentley JK; Cui TX; Richardson MN; Linn MJ; Lei J; Chen Q; Goldsmith AM; Pryhuber GS; Hershenson MB
    Am J Physiol Lung Cell Mol Physiol; 2014 Aug; 307(3):L231-9. PubMed ID: 24907056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure.
    Velten M; Heyob KM; Rogers LK; Welty SE
    J Appl Physiol (1985); 2010 May; 108(5):1347-56. PubMed ID: 20223995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arginase and α-smooth muscle actin induction after hyperoxic exposure in a mouse model of bronchopulmonary dysplasia.
    Trittmann JK; Velten M; Heyob KM; Almazroue H; Jin Y; Nelin LD; Rogers LK
    Clin Exp Pharmacol Physiol; 2018 Jun; 45(6):556-562. PubMed ID: 29266319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of β-catenin signaling improves alveolarization and reduces pulmonary hypertension in experimental bronchopulmonary dysplasia.
    Alapati D; Rong M; Chen S; Hehre D; Hummler SC; Wu S
    Am J Respir Cell Mol Biol; 2014 Jul; 51(1):104-13. PubMed ID: 24484510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sexual dimorphism of the pulmonary transcriptome in neonatal hyperoxic lung injury: identification of angiogenesis as a key pathway.
    Coarfa C; Zhang Y; Maity S; Perera DN; Jiang W; Wang L; Couroucli X; Moorthy B; Lingappan K
    Am J Physiol Lung Cell Mol Physiol; 2017 Dec; 313(6):L991-L1005. PubMed ID: 28818871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Gender on Mesenchymal Stem Cell (MSC) Efficacy in Neonatal Hyperoxia-Induced Lung Injury.
    Sammour I; Somashekar S; Huang J; Batlahally S; Breton M; Valasaki K; Khan A; Wu S; Young KC
    PLoS One; 2016; 11(10):e0164269. PubMed ID: 27711256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelial to mesenchymal transition in neonatal hyperoxic lung injury: role of sex as a biological variable.
    Cantu A; Cantu Gutierrez M; Zhang Y; Dong X; Lingappan K
    Physiol Genomics; 2023 Aug; 55(8):345-354. PubMed ID: 37395632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maladaptive functional changes in alveolar fibroblasts due to perinatal hyperoxia impair epithelial differentiation.
    Riccetti MR; Ushakumary MG; Waltamath M; Green J; Snowball J; Dautel SE; Endale M; Lami B; Woods J; Ahlfeld SK; Perl AT
    JCI Insight; 2022 Mar; 7(5):. PubMed ID: 35113810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Curcumin augments lung maturation, preventing neonatal lung injury by inhibiting TGF-β signaling.
    Sakurai R; Li Y; Torday JS; Rehan VK
    Am J Physiol Lung Cell Mol Physiol; 2011 Nov; 301(5):L721-30. PubMed ID: 21821729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.