BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30169550)

  • 1. A generalized framework for controlling FDR in gene regulatory network inference.
    Morgan D; Tjärnberg A; Nordling TEM; Sonnhammer ELL
    Bioinformatics; 2019 Mar; 35(6):1026-1032. PubMed ID: 30169550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast and accurate gene regulatory network inference by normalized least squares regression.
    Hillerton T; Seçilmiş D; Nelander S; Sonnhammer ELL
    Bioinformatics; 2022 Apr; 38(8):2263-2268. PubMed ID: 35176145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GeneSPIDER - gene regulatory network inference benchmarking with controlled network and data properties.
    Tjärnberg A; Morgan DC; Studham M; Nordling TEM; Sonnhammer ELL
    Mol Biosyst; 2017 Jun; 13(7):1304-1312. PubMed ID: 28485748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring the experimental design for accurate gene regulatory network inference.
    Seçilmiş D; Hillerton T; Nelander S; Sonnhammer ELL
    Bioinformatics; 2021 Oct; 37(20):3553-3559. PubMed ID: 33978748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal Sparsity Selection Based on an Information Criterion for Accurate Gene Regulatory Network Inference.
    Seçilmiş D; Nelander S; Sonnhammer ELL
    Front Genet; 2022; 13():855770. PubMed ID: 35923701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PoLoBag: Polynomial Lasso Bagging for signed gene regulatory network inference from expression data.
    Ghosh Roy G; Geard N; Verspoor K; He S
    Bioinformatics; 2021 Jan; 36(21):5187-5193. PubMed ID: 32697830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LogBTF: gene regulatory network inference using Boolean threshold network model from single-cell gene expression data.
    Li L; Sun L; Chen G; Wong CW; Ching WK; Liu ZP
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37079737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrative random forest for gene regulatory network inference.
    Petralia F; Wang P; Yang J; Tu Z
    Bioinformatics; 2015 Jun; 31(12):i197-205. PubMed ID: 26072483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perturbation-based gene regulatory network inference to unravel oncogenic mechanisms.
    Morgan D; Studham M; Tjärnberg A; Weishaupt H; Swartling FJ; Nordling TEM; Sonnhammer ELL
    Sci Rep; 2020 Aug; 10(1):14149. PubMed ID: 32843692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal design of gene knockout experiments for gene regulatory network inference.
    Ud-Dean SM; Gunawan R
    Bioinformatics; 2016 Mar; 32(6):875-83. PubMed ID: 26568633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knowledge of the perturbation design is essential for accurate gene regulatory network inference.
    Seçilmiş D; Hillerton T; Tjärnberg A; Nelander S; Nordling TEM; Sonnhammer ELL
    Sci Rep; 2022 Oct; 12(1):16531. PubMed ID: 36192495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BRANE Cut: biologically-related a priori network enhancement with graph cuts for gene regulatory network inference.
    Pirayre A; Couprie C; Bidard F; Duval L; Pesquet JC
    BMC Bioinformatics; 2015 Nov; 16():368. PubMed ID: 26537179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncovering cancer gene regulation by accurate regulatory network inference from uninformative data.
    Seçilmiş D; Hillerton T; Morgan D; Tjärnberg A; Nelander S; Nordling TEM; Sonnhammer ELL
    NPJ Syst Biol Appl; 2020 Nov; 6(1):37. PubMed ID: 33168813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilizing benchmarked dataset and gene regulatory network to investigate hub genes in postmenopausal osteoporosis.
    Wang XL; Liu YM; Zhang ZD; Wang SS; Du YB; Yin ZS
    J Cancer Res Ther; 2020; 16(4):867-873. PubMed ID: 32930132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks.
    Moerman T; Aibar Santos S; Bravo González-Blas C; Simm J; Moreau Y; Aerts J; Aerts S
    Bioinformatics; 2019 Jun; 35(12):2159-2161. PubMed ID: 30445495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust discovery of gene regulatory networks from single-cell gene expression data by Causal Inference Using Composition of Transactions.
    Shojaee A; Huang SC
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37897702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving network inference algorithms using resampling methods.
    Colby SM; McClure RS; Overall CC; Renslow RS; McDermott JE
    BMC Bioinformatics; 2018 Oct; 19(1):376. PubMed ID: 30314469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inference of differential gene regulatory networks based on gene expression and genetic perturbation data.
    Zhou X; Cai X
    Bioinformatics; 2020 Jan; 36(1):197-204. PubMed ID: 31263873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid framework for reverse engineering of robust Gene Regulatory Networks.
    Jafari M; Ghavami B; Sattari V
    Artif Intell Med; 2017 Jun; 79():15-27. PubMed ID: 28602483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PEAK: Integrating Curated and Noisy Prior Knowledge in Gene Regulatory Network Inference.
    Altarawy D; Eid FE; Heath LS
    J Comput Biol; 2017 Sep; 24(9):863-873. PubMed ID: 28294630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.