BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30169668)

  • 1. Method and Apparatus for the Automated Delivery of Continuous Neural Stem Cell Trails Into the Spinal Cord of Small and Large Animals.
    Kutikov AB; Moore SW; Layer RT; Podell PE; Sridhar N; Santamaria AJ; Aimetti AA; Hofstetter CP; Ulich TR; Guest JD
    Neurosurgery; 2019 Oct; 85(4):560-573. PubMed ID: 30169668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional assessment of the acute local and distal transplantation of human neural stem cells after spinal cord injury.
    Cheng I; Mayle RE; Cox CA; Park DY; Smith RL; Corcoran-Schwartz I; Ponnusamy KE; Oshtory R; Smuck MW; Mitra R; Kharazi AI; Carragee EJ
    Spine J; 2012 Nov; 12(11):1040-4. PubMed ID: 23063425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local versus distal transplantation of human neural stem cells following chronic spinal cord injury.
    Cheng I; Githens M; Smith RL; Johnston TR; Park DY; Stauff MP; Salari N; Tileston KR; Kharazi AI
    Spine J; 2016 Jun; 16(6):764-9. PubMed ID: 26698654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of dosing regimen and reproducibility of intraspinal grafting of human spinal stem cells in immunosuppressed minipigs.
    Usvald D; Vodicka P; Hlucilova J; Prochazka R; Motlik J; Kuchorova K; Johe K; Marsala S; Scadeng M; Kakinohana O; Navarro R; Santa M; Hefferan MP; Yaksh TL; Marsala M
    Cell Transplant; 2010; 19(9):1103-22. PubMed ID: 20412634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preclinical Validation of Multilevel Intraparenchymal Stem Cell Therapy in the Porcine Spinal Cord.
    Gutierrez J; Lamanna JJ; Grin N; Hurtig CV; Miller JH; Riley J; Urquia L; Avalos P; Svendsen CN; Federici T; Boulis NM
    Neurosurgery; 2015 Oct; 77(4):604-12; discussion 612. PubMed ID: 26134596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the Post-Spinal Cord Injury Microenvironment on the Differentiation Capacity of Human Neural Stem Cells Derived from Induced Pluripotent Stem Cells.
    López-Serrano C; Torres-Espín A; Hernández J; Alvarez-Palomo AB; Requena J; Gasull X; Edel MJ; Navarro X
    Cell Transplant; 2016 Oct; 25(10):1833-1852. PubMed ID: 27075820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined NgR vaccination and neural stem cell transplantation promote functional recovery after spinal cord injury in adult rats.
    Xu CJ; Xu L; Huang LD; Li Y; Yu PP; Hang Q; Xu XM; Lu PH
    Neuropathol Appl Neurobiol; 2011 Feb; 37(2):135-55. PubMed ID: 20819171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats.
    Liang P; Jin LH; Liang T; Liu EZ; Zhao SG
    Chin Med J (Engl); 2006 Aug; 119(16):1331-8. PubMed ID: 16934177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinational therapy of lithium and human neural stem cells in rat spinal cord contusion model.
    Mohammadshirazi A; Sadrosadat H; Jaberi R; Zareikheirabadi M; Mirsadeghi S; Naghdabadi Z; Ghaneezabadi M; Fardmanesh M; Baharvand H; Kiani S
    J Cell Physiol; 2019 Nov; 234(11):20742-20754. PubMed ID: 31004353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion tensor imaging as a biomarker for assessing neuronal stem cell treatments affecting areas distal to the site of spinal cord injury.
    Jirjis MB; Valdez C; Vedantam A; Schmit BD; Kurpad SN
    J Neurosurg Spine; 2017 Feb; 26(2):243-251. PubMed ID: 27689421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transplantation of a Peripheral Nerve with Neural Stem Cells Plus Lithium Chloride Injection Promote the Recovery of Rat Spinal Cord Injury.
    Zhang LQ; Zhang WM; Deng L; Xu ZX; Lan WB; Lin JH
    Cell Transplant; 2018 Mar; 27(3):471-484. PubMed ID: 29756516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal Preclinical Conditions for Using Adult Human Multipotent Neural Cells in the Treatment of Spinal Cord Injury.
    Won JS; Yeon JY; Pyeon HJ; Noh YJ; Hwang JY; Kim CK; Nam H; Lee KH; Lee SH; Joo KM
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33806636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted Inhibition of Leucine-Rich Repeat and Immunoglobulin Domain-Containing Protein 1 in Transplanted Neural Stem Cells Promotes Neuronal Differentiation and Functional Recovery in Rats Subjected to Spinal Cord Injury.
    Chen N; Cen JS; Wang J; Qin G; Long L; Wang L; Wei F; Xiang Q; Deng DY; Wan Y
    Crit Care Med; 2016 Mar; 44(3):e146-57. PubMed ID: 26491860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transplantation of Recombinant Vascular Endothelial Growth Factor (VEGF)189-Neural Stem Cells Downregulates Transient Receptor Potential Vanilloid 1 (TRPV1) and Improves Motor Outcome in Spinal Cord Injury.
    Zeng Y; Han H; Tang B; Chen J; Mao D; Xiong M
    Med Sci Monit; 2018 Feb; 24():1089-1096. PubMed ID: 29466323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrathecal transplantation of stem cells by lumbar puncture for thoracic spinal cord injury in the rat.
    Mothe AJ; Bozkurt G; Catapano J; Zabojova J; Wang X; Keating A; Tator CH
    Spinal Cord; 2011 Sep; 49(9):967-73. PubMed ID: 21606931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of functional recovery by co-transplantation of neural stem cells and Schwann cells in a rat spinal cord contusion injury model.
    Li J; Sun CR; Zhang H; Tsang KS; Li JH; Zhang SD; An YH
    Biomed Environ Sci; 2007 Jun; 20(3):242-9. PubMed ID: 17672216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prior Treatment with Anti-High Mobility Group Box-1 Antibody Boosts Human Neural Stem Cell Transplantation-Mediated Functional Recovery After Spinal Cord Injury.
    Uezono N; Zhu Y; Fujimoto Y; Yasui T; Matsuda T; Nakajo M; Abematsu M; Setoguchi T; Mori S; Takahashi HK; Komiya S; Nishibori M; Nakashima K
    Stem Cells; 2018 May; 36(5):737-750. PubMed ID: 29517828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expandable Sendai-Virus-Reprogrammed Human iPSC-Neuronal Precursors:
    Kobayashi Y; Shigyo M; Platoshyn O; Marsala S; Kato T; Takamura N; Yoshida K; Kishino A; Bravo-Hernandez M; Juhas S; Juhasova J; Studenovska H; Proks V; Driscoll SP; Glenn TD; Pfaff SL; Ciacci JD; Marsala M
    Cell Transplant; 2023; 32():9636897221107009. PubMed ID: 37088987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplantation of NSCs with OECs alleviates neuropathic pain associated with NGF downregulation in rats following spinal cord injury.
    Luo Y; Zou Y; Yang L; Liu J; Liu S; Liu J; Zhou X; Zhang W; Wang T
    Neurosci Lett; 2013 Aug; 549():103-8. PubMed ID: 23791854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concomitant use of mesenchymal stem cells and neural stem cells for treatment of spinal cord injury: A combo cell therapy approach.
    Hosseini SM; Sani M; Haider KH; Dorvash M; Ziaee SM; Karimi A; Namavar MR
    Neurosci Lett; 2018 Mar; 668():138-146. PubMed ID: 29317311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.