These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 30170115)
1. Rapid Disruption of Genes Specifically in Livers of Mice Using Multiplex CRISPR/Cas9 Editing. Pankowicz FP; Barzi M; Kim KH; Legras X; Martins CS; Wooton-Kee CR; Lagor WR; Marini JC; Elsea SH; Bissig-Choisat B; Moore DD; Bissig KD Gastroenterology; 2018 Dec; 155(6):1967-1970.e6. PubMed ID: 30170115 [TBL] [Abstract][Full Text] [Related]
2. Somatic Liver Knockout (SLiK): A Quick and Efficient Way to Generate Liver-Specific Knockout Mice Using Multiplex CRISPR/Cas9 Gene Editing. Johnson CG; Chen T; Furey N; Hemmingsen MG; Bissig KD Curr Protoc Mol Biol; 2020 Mar; 130(1):e117. PubMed ID: 32150344 [TBL] [Abstract][Full Text] [Related]
3. CRISPR/Cas9 Engineering of Adult Mouse Liver Demonstrates That the Dnajb1-Prkaca Gene Fusion Is Sufficient to Induce Tumors Resembling Fibrolamellar Hepatocellular Carcinoma. Engelholm LH; Riaz A; Serra D; Dagnæs-Hansen F; Johansen JV; Santoni-Rugiu E; Hansen SH; Niola F; Frödin M Gastroenterology; 2017 Dec; 153(6):1662-1673.e10. PubMed ID: 28923495 [TBL] [Abstract][Full Text] [Related]
4. In Vivo Editing of the Adult Mouse Liver Using CRISPR/Cas9 and Hydrodynamic Tail Vein Injection. Niola F; Dagnæs-Hansen F; Frödin M Methods Mol Biol; 2019; 1961():329-341. PubMed ID: 30912055 [TBL] [Abstract][Full Text] [Related]
5. Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia. Pankowicz FP; Barzi M; Legras X; Hubert L; Mi T; Tomolonis JA; Ravishankar M; Sun Q; Yang D; Borowiak M; Sumazin P; Elsea SH; Bissig-Choisat B; Bissig KD Nat Commun; 2016 Aug; 7():12642. PubMed ID: 27572891 [TBL] [Abstract][Full Text] [Related]
6. Optimized protocols for efficient gene editing in mouse hepatocytes Chen Y; Ding Q STAR Protoc; 2022 Mar; 3(1):101062. PubMed ID: 35005644 [TBL] [Abstract][Full Text] [Related]
7. Ex vivo gene editing and cell therapy for hereditary tyrosinemia type 1. Ates I; Stuart C; Rathbone T; Barzi M; He G; Major AM; Shankar V; Lyman RA; Angner SS; Mackay TFC; Srinivasan S; Farris AB; Bissig KD; Cottle RN Hepatol Commun; 2024 May; 8(5):. PubMed ID: 38668730 [TBL] [Abstract][Full Text] [Related]
8. CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report. Wang X; Raghavan A; Chen T; Qiao L; Zhang Y; Ding Q; Musunuru K Arterioscler Thromb Vasc Biol; 2016 May; 36(5):783-6. PubMed ID: 26941020 [TBL] [Abstract][Full Text] [Related]
9. One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs. Zuo E; Cai YJ; Li K; Wei Y; Wang BA; Sun Y; Liu Z; Liu J; Hu X; Wei W; Huo X; Shi L; Tang C; Liang D; Wang Y; Nie YH; Zhang CC; Yao X; Wang X; Zhou C; Ying W; Wang Q; Chen RC; Shen Q; Xu GL; Li J; Sun Q; Xiong ZQ; Yang H Cell Res; 2017 Jul; 27(7):933-945. PubMed ID: 28585534 [TBL] [Abstract][Full Text] [Related]
10. Gene editing in clinical isolates of Candida parapsilosis using CRISPR/Cas9. Lombardi L; Turner SA; Zhao F; Butler G Sci Rep; 2017 Aug; 7(1):8051. PubMed ID: 28808289 [TBL] [Abstract][Full Text] [Related]
11. Generation of Acsl4 Gene Knockout Mouse Model by CRISPR/Cas9-Mediated Genome Engineering. Ren H; Hua Z; Meng J; Molenaar A; Bi Y; Cheng N; Zheng X Crit Rev Biomed Eng; 2019; 47(5):419-426. PubMed ID: 32422031 [TBL] [Abstract][Full Text] [Related]
12. A Novel Rat Model of Nonalcoholic Fatty Liver Disease Constructed Through CRISPR/Cas-Based Hydrodynamic Injection. Yu Q; Tan RZ; Gan Q; Zhong X; Wang YQ; Zhou J; Wang L Mol Biotechnol; 2017 Oct; 59(9-10):365-373. PubMed ID: 28695481 [TBL] [Abstract][Full Text] [Related]
13. Modeling Phenotypic Heterogeneity of Glycogen Storage Disease Type 1a Liver Disease in Mice by Somatic CRISPR/CRISPR-associated protein 9-Mediated Gene Editing. Rutten MGS; Derks TGJ; Huijkman NCA; Bos T; Kloosterhuis NJ; van de Kolk KCWA; Wolters JC; Koster MH; Bongiovanni L; Thomas RE; de Bruin A; van de Sluis B; Oosterveer MH Hepatology; 2021 Nov; 74(5):2491-2507. PubMed ID: 34157136 [TBL] [Abstract][Full Text] [Related]
14. Investigation of Genetic Dependencies Using CRISPR-Cas9-based Competition Assays. Deshpande A; Chen BR; Zhao L; Saddoris K; Kerr M; Zhu N; Mali P; Deshpande AJ J Vis Exp; 2019 Jan; (143):. PubMed ID: 30663717 [TBL] [Abstract][Full Text] [Related]
15. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum. Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154 [TBL] [Abstract][Full Text] [Related]
16. Efficient Gene Editing of Human Induced Pluripotent Stem Cells Using CRISPR/Cas9. Yumlu S; Bashir S; Stumm J; Kühn R Methods Mol Biol; 2019; 1961():137-151. PubMed ID: 30912045 [TBL] [Abstract][Full Text] [Related]
17. Simple Protocol for Generating and Genotyping Genome-Edited Mice With CRISPR-Cas9 Reagents. Fernández A; Morín M; Muñoz-Santos D; Josa S; Montero A; Rubio-Fernández M; Cantero M; Fernández J; Del Hierro MJ; Castrillo M; Moreno-Pelayo MÁ; Montoliu L Curr Protoc Mouse Biol; 2020 Mar; 10(1):e69. PubMed ID: 32159922 [TBL] [Abstract][Full Text] [Related]
18. Creation of knock out and knock in mice by CRISPR/Cas9 to validate candidate genes for human male infertility, interest, difficulties and feasibility. Kherraf ZE; Conne B; Amiri-Yekta A; Kent MC; Coutton C; Escoffier J; Nef S; Arnoult C; Ray PF Mol Cell Endocrinol; 2018 Jun; 468():70-80. PubMed ID: 29522859 [TBL] [Abstract][Full Text] [Related]
19. Advances in Sphingolipidoses: CRISPR-Cas9 Editing as an Option for Modelling and Therapy. Santos R; Amaral O Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31771289 [TBL] [Abstract][Full Text] [Related]
20. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system. Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]