These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 30170204)

  • 21. Abiotic soil changes induced by engineered nanomaterials: A critical review.
    Dror I; Yaron B; Berkowitz B
    J Contam Hydrol; 2015 Oct; 181():3-16. PubMed ID: 25913535
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leaching potential of nano-scale titanium dioxide in fresh municipal solid waste.
    Dulger M; Sakallioglu T; Temizel I; Demirel B; Copty NK; Onay TT; Uyguner-Demirel CS; Karanfil T
    Chemosphere; 2016 Feb; 144():1567-72. PubMed ID: 26517383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City.
    Musee N
    Hum Exp Toxicol; 2011 Sep; 30(9):1181-95. PubMed ID: 21148195
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Material-specific properties applied to an environmental risk assessment of engineered nanomaterials - implications on grouping and read-across concepts.
    Wigger H; Nowack B
    Nanotoxicology; 2019 Jun; 13(5):623-643. PubMed ID: 30727799
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Review on the Environmental Fate Models for Predicting the Distribution of Engineered Nanomaterials in Surface Waters.
    Suhendra E; Chang CH; Hou WC; Hsieh YC
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604975
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic Model for the Stocks and Release Flows of Engineered Nanomaterials.
    Song R; Qin Y; Suh S; Keller AA
    Environ Sci Technol; 2017 Nov; 51(21):12424-12433. PubMed ID: 29022708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products.
    Mitrano DM; Motellier S; Clavaguera S; Nowack B
    Environ Int; 2015 Apr; 77():132-47. PubMed ID: 25705000
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinguishing Engineered TiO
    Bland GD; Battifarano M; Pradas Del Real AE; Sarret G; Lowry GV
    Environ Sci Technol; 2022 Mar; 56(5):2990-3001. PubMed ID: 35133134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Current limitations and challenges in nanowaste detection, characterisation and monitoring.
    Part F; Zecha G; Causon T; Sinner EK; Huber-Humer M
    Waste Manag; 2015 Sep; 43():407-20. PubMed ID: 26117420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling the fate and end-of-life phase of engineered nanomaterials in the Japanese construction sector.
    Suzuki S; Part F; Matsufuji Y; Huber-Humer M
    Waste Manag; 2018 Feb; 72():389-398. PubMed ID: 29196056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineered nanomaterials in rivers--exposure scenarios for Switzerland at high spatial and temporal resolution.
    Gottschalk F; Ort C; Scholz RW; Nowack B
    Environ Pollut; 2011 Dec; 159(12):3439-45. PubMed ID: 21890252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probabilistic modeling of the flows and environmental risks of nano-silica.
    Wang Y; Kalinina A; Sun T; Nowack B
    Sci Total Environ; 2016 Mar; 545-546():67-76. PubMed ID: 26745294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical interactions between Nano-ZnO and Nano-TiO2 in a natural aqueous medium.
    Tong T; Fang K; Thomas SA; Kelly JJ; Gray KA; Gaillard JF
    Environ Sci Technol; 2014 Jul; 48(14):7924-32. PubMed ID: 24918623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Initial Speciation of Copper- and Silver-Based Nanoparticles on Their Long-Term Fate and Phytoavailability in Freshwater Wetland Mesocosms.
    Stegemeier JP; Avellan A; Lowry GV
    Environ Sci Technol; 2017 Nov; 51(21):12114-12122. PubMed ID: 29017014
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment.
    Gottschalk F; Lassen C; Kjoelholt J; Christensen F; Nowack B
    Int J Environ Res Public Health; 2015 May; 12(5):5581-602. PubMed ID: 26006129
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of species sensitivity distribution modeling approaches for environmental risk assessment of nanomaterials - A case study for silver and titanium dioxide representative materials.
    Sørensen SN; Wigger H; Zabeo A; Semenzin E; Hristozov D; Nowack B; Spurgeon DJ; Baun A
    Aquat Toxicol; 2020 Aug; 225():105543. PubMed ID: 32585540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Symbiosis between nitrogen-fixing bacteria and Medicago truncatula is not significantly affected by silver and silver sulfide nanomaterials.
    Judy JD; Kirby JK; McLaughlin MJ; McNear D; Bertsch PM
    Environ Pollut; 2016 Jul; 214():731-736. PubMed ID: 27149150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Environmental and health effects of nanomaterials in nanotextiles and façade coatings.
    Som C; Wick P; Krug H; Nowack B
    Environ Int; 2011 Aug; 37(6):1131-42. PubMed ID: 21397331
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies.
    Gottschalk F; Sun T; Nowack B
    Environ Pollut; 2013 Oct; 181():287-300. PubMed ID: 23856352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.