These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30170840)

  • 1. Micropipette aspiration method for characterizing biological materials with surface energy.
    Ding Y; Wang GF; Feng XQ; Yu SW
    J Biomech; 2018 Oct; 80():32-36. PubMed ID: 30170840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An axisymmetric boundary integral model for assessing elastic cell properties in the micropipette aspiration contact problem.
    Haider MA; Guilak F
    J Biomech Eng; 2002 Oct; 124(5):586-95. PubMed ID: 12405602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the determination of elastic moduli of cells by AFM based indentation.
    Ding Y; Xu GK; Wang GF
    Sci Rep; 2017 Apr; 7():45575. PubMed ID: 28368053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in-silico study on the mechanical behavior of colorectal cancer cell lines in the micropipette aspiration process.
    Ghoytasi I; Bavi O; Kaazempur Mofrad MR; Naghdabadi R
    Comput Biol Med; 2024 Aug; 178():108744. PubMed ID: 38889631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large deformation finite element analysis of micropipette aspiration to determine the mechanical properties of the chondrocyte.
    Baaijens FP; Trickey WR; Laursen TA; Guilak F
    Ann Biomed Eng; 2005 Apr; 33(4):494-501. PubMed ID: 15909655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of mechanical testing methods for biomaterials: Pipette aspiration, nanoindentation, and macroscale testing.
    Buffinton CM; Tong KJ; Blaho RA; Buffinton EM; Ebenstein DM
    J Mech Behav Biomed Mater; 2015 Nov; 51():367-79. PubMed ID: 26295450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Measurement of Elastic Properties of Cells by Micropipette Aspiration and Its Application to Lymphocytes.
    Esteban-Manzanares G; González-Bermúdez B; Cruces J; De la Fuente M; Li Q; Guinea GV; Pérez-Rigueiro J; Elices M; Plaza GR
    Ann Biomed Eng; 2017 May; 45(5):1375-1385. PubMed ID: 28097526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A finite element study of micropipette aspiration of single cells: effect of compressibility.
    Bidhendi AJ; Korhonen RK
    Comput Math Methods Med; 2012; 2012():192618. PubMed ID: 22400045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An axisymmetric boundary integral model for incompressible linear viscoelasticity: application to the micropipette aspiration contact problem.
    Haider MA; Guilak F
    J Biomech Eng; 2000 Jun; 122(3):236-44. PubMed ID: 10923291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A poroviscohyperelastic model for numerical analysis of mechanical behavior of single chondrocyte.
    Nguyen TD; Oloyede A; Gu Y
    Comput Methods Biomech Biomed Engin; 2016; 19(2):126-36. PubMed ID: 25588670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of analytical and inverse finite element approaches to estimate cell viscoelastic properties by micropipette aspiration.
    Zhao R; Wyss K; Simmons CA
    J Biomech; 2009 Dec; 42(16):2768-73. PubMed ID: 19765713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proposal and validation of polyconvex strain-energy function for biological soft tissues.
    Funai T; Kataoka H; Yokota H; Suzuki TA
    Biomed Mater Eng; 2021; 32(3):131-144. PubMed ID: 33682691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple method to estimate the exponential material parameters of heart valve tissue based on analogy between uniaxial tension and micropipette aspiration.
    Zhao R; Simmons CA
    Biomech Model Mechanobiol; 2013 Nov; 12(6):1283-90. PubMed ID: 23355188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element analysis of imposing femtonewton forces with micropipette aspiration.
    Shao JY
    Ann Biomed Eng; 2002 Apr; 30(4):546-54. PubMed ID: 12086005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are elastic moduli of biological cells depth dependent or not? Another explanation using a contact mechanics model with surface tension.
    Ding Y; Wang J; Xu GK; Wang GF
    Soft Matter; 2018 Sep; 14(36):7534-7541. PubMed ID: 30152838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pipette aspiration applied to the local stiffness measurement of soft tissues.
    Aoki T; Ohashi T; Matsumoto T; Sato M
    Ann Biomed Eng; 1997; 25(3):581-7. PubMed ID: 9146811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic hyperelastic behavior of soft biological tissues.
    Chen ZW; Joli P; Feng ZQ
    Comput Methods Biomech Biomed Engin; 2015; 18(13):1436-44. PubMed ID: 25127194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of the elasticity modulus of soft tissues.
    Zörner S; Kaltenbacher M; Lerch R; Sutor A; Döllinger M
    J Biomech; 2010 May; 43(8):1540-5. PubMed ID: 20189571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for cochlear outer hair cell deformations in micropipette aspiration experiments: an analytical solution.
    Spector AA; Brownell WE; Popel AS
    Ann Biomed Eng; 1996; 24(2):241-9. PubMed ID: 8678356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical properties of the pelvic floor muscles of continent and incontinent women using an inverse finite element analysis.
    Silva MET; Brandão S; Parente MPL; Mascarenhas T; Natal Jorge RM
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):842-852. PubMed ID: 28303730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.