BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

560 related articles for article (PubMed ID: 30171007)

  • 1. Biochemical Characterization of CYP505D6, a Self-Sufficient Cytochrome P450 from the White-Rot Fungus Phanerochaete chrysosporium.
    Sakai K; Matsuzaki F; Wise L; Sakai Y; Jindou S; Ichinose H; Takaya N; Kato M; Wariishi H; Shimizu M
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30171007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P450 redox enzymes in the white rot fungus Phanerochaete chrysosporium: gene transcription, heterologous expression, and activity analysis on the purified proteins.
    Subramanian V; Doddapaneni H; Syed K; Yadav JS
    Curr Microbiol; 2010 Oct; 61(4):306-14. PubMed ID: 20221604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning, expression and characterization of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium strain BKM-F-1767.
    Yang DD; François JM; de Billerbeck GM
    BMC Microbiol; 2012 Jun; 12():126. PubMed ID: 22742413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterologous expression of fungal cytochromes P450 (CYP5136A1 and CYP5136A3) from the white-rot basidiomycete Phanerochaete chrysosporium: Functionalization with cytochrome b5 in Escherichia coli.
    Hatakeyama M; Kitaoka T; Ichinose H
    Enzyme Microb Technol; 2016 Jul; 89():7-14. PubMed ID: 27233123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic properties of cytochrome P450 catalyzing 3'-hydroxylation of naringenin from the white-rot fungus Phanerochaete chrysosporium.
    Kasai N; Ikushiro S; Hirosue S; Arisawa A; Ichinose H; Wariishi H; Ohta M; Sakaki T
    Biochem Biophys Res Commun; 2009 Sep; 387(1):103-8. PubMed ID: 19576179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular characterization of cytochrome P450 catalyzing hydroxylation of benzoates from the white-rot fungus Phanerochaete chrysosporium.
    Matsuzaki F; Wariishi H
    Biochem Biophys Res Commun; 2005 Sep; 334(4):1184-90. PubMed ID: 16039998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro characterization of CYP102G4 from Streptomyces cattleya: A self-sufficient P450 naturally producing indigo.
    Kim J; Lee PG; Jung EO; Kim BG
    Biochim Biophys Acta Proteins Proteom; 2018 Jan; 1866(1):60-67. PubMed ID: 28821467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A natural heme-signature variant of CYP267A1 from Sorangium cellulosum So ce56 executes diverse ω-hydroxylation.
    Khatri Y; Hannemann F; Girhard M; Kappl R; Hutter M; Urlacher VB; Bernhardt R
    FEBS J; 2015 Jan; 282(1):74-88. PubMed ID: 25302415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes.
    Syed K; Porollo A; Lam YW; Grimmett PE; Yadav JS
    Appl Environ Microbiol; 2013 Apr; 79(8):2692-702. PubMed ID: 23416995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atypical kinetics of cytochromes P450 catalysing 3'-hydroxylation of flavone from the white-rot fungus Phanerochaete chrysosporium.
    Kasai N; Ikushiro S; Hirosue S; Arisawa A; Ichinose H; Uchida Y; Wariishi H; Ohta M; Sakaki T
    J Biochem; 2010 Jan; 147(1):117-25. PubMed ID: 19819902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional diversity of cytochrome P450s of the white-rot fungus Phanerochaete chrysosporium.
    Matsuzaki F; Wariishi H
    Biochem Biophys Res Commun; 2004 Nov; 324(1):387-93. PubMed ID: 15465031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic analysis of hydroxylation of saturated fatty acids by recombinant P450foxy produced by an Escherichia coli expression system.
    Kitazume T; Tanaka A; Takaya N; Nakamura A; Matsuyama S; Suzuki T; Shoun H
    Eur J Biochem; 2002 Apr; 269(8):2075-82. PubMed ID: 11985584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of functional cytochrome P450 and its involvement in degradation of benzoic acid by Phanerochaete chrysosporium.
    Ning D; Wang H; Zhuang Y
    Biodegradation; 2010 Apr; 21(2):297-308. PubMed ID: 19787435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. P450 monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium.
    Syed K; Yadav JS
    Crit Rev Microbiol; 2012 Nov; 38(4):339-63. PubMed ID: 22624627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of hydroxy-fatty acid derivatives from waste oil by Escherichia coli cells producing fungal cytochrome P450foxy.
    Kitazume T; Yamazaki Y; Matsuyama S; Shoun H; Takaya N
    Appl Microbiol Biotechnol; 2008 Jul; 79(6):981-8. PubMed ID: 18512058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and characterization of CYP51, the ancient sterol 14-demethylase activity for cytochromes P450 (CYP), in the white-rot fungus Phanerochaete chrysosporium.
    Warrilow A; Ugochukwu C; Lamb D; Kelly D; Kelly S
    Lipids; 2008 Dec; 43(12):1143-53. PubMed ID: 18853217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different mechanisms of regioselection of fatty acid hydroxylation by laurate (omega-1)-hydroxylating P450s, P450 2C2 and P450 2E1.
    Fukuda T; Imai Y; Komori M; Nakamura M; Kusunose E; Satouchi K; Kusunose M
    J Biochem; 1994 Feb; 115(2):338-44. PubMed ID: 8206883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. P450ome of the white rot fungus Phanerochaete chrysosporium: structure, evolution and regulation of expression of genomic P450 clusters.
    Yadav JS; Doddapaneni H; Subramanian V
    Biochem Soc Trans; 2006 Dec; 34(Pt 6):1165-9. PubMed ID: 17073777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering.
    Doddapaneni H; Chakraborty R; Yadav JS
    BMC Genomics; 2005 Jun; 6():92. PubMed ID: 15955240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery and characterization of new O-methyltransferase from the genome of the lignin-degrading fungus Phanerochaete chrysosporium for enhanced lignin degradation.
    Thanh Mai Pham L; Kim YH
    Enzyme Microb Technol; 2016 Jan; 82():66-73. PubMed ID: 26672450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.