These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 30171327)
1. Leveraging Big Data Towards Functionally-Based, Catchment Scale Restoration Prioritization. Lovette JP; Duncan JM; Smart LS; Fay JP; Olander LP; Urban DL; Daly N; Blackwell J; Hoos AB; GarcĂa AM; Band LE Environ Manage; 2018 Dec; 62(6):1007-1024. PubMed ID: 30171327 [TBL] [Abstract][Full Text] [Related]
2. Examining water quality effects of riparian wetland loss and restoration scenarios in a southern ontario watershed. Yang W; Liu Y; Ou C; Gabor S J Environ Manage; 2016 Jun; 174():26-34. PubMed ID: 26989942 [TBL] [Abstract][Full Text] [Related]
3. Riparian wetland rehabilitation and beaver re-colonization impacts on hydrological processes and water quality in a lowland agricultural catchment. Smith A; Tetzlaff D; Gelbrecht J; Kleine L; Soulsby C Sci Total Environ; 2020 Jan; 699():134302. PubMed ID: 31522046 [TBL] [Abstract][Full Text] [Related]
4. A new framework to evaluate ecosystem health: a case study in the Wei River basin, China. Wu W; Xu Z; Zhan C; Yin X; Yu S Environ Monit Assess; 2015 Jul; 187(7):460. PubMed ID: 26108745 [TBL] [Abstract][Full Text] [Related]
5. Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale. Wang X; Shang S; Qu Z; Liu T; Melesse AM; Yang W J Environ Manage; 2010 Jul; 91(7):1511-25. PubMed ID: 20236754 [TBL] [Abstract][Full Text] [Related]
6. Exploring the multiscale hydrologic regulation of multipond systems in a humid agricultural catchment. Chen W; Nover D; Yen H; Xia Y; He B; Sun W; Viers J Water Res; 2020 Oct; 184():115987. PubMed ID: 32688156 [TBL] [Abstract][Full Text] [Related]
7. Priorization of River Restoration by Coupling Soil and Water Assessment Tool (SWAT) and Support Vector Machine (SVM) Models in the Taizi River Basin, Northern China. Fan J; Li M; Guo F; Yan Z; Zheng X; Zhang Y; Xu Z; Wu F Int J Environ Res Public Health; 2018 Sep; 15(10):. PubMed ID: 30249052 [TBL] [Abstract][Full Text] [Related]
8. Modelling hydrological effects of wetland restoration: a differentiated view. Staes J; Rubarenzya MH; Meire P; Willems P Water Sci Technol; 2009; 59(3):433-41. PubMed ID: 19213997 [TBL] [Abstract][Full Text] [Related]
9. Balancing multiple stakeholder objectives for floodplain reconnection and wetland restoration. Worley LC; Underwood KL; Diehl RM; Matt JE; Lawson KS; Seigel RM; Rizzo DM J Environ Manage; 2023 Jan; 326(Pt A):116648. PubMed ID: 36368198 [TBL] [Abstract][Full Text] [Related]
10. Flow Restoration in the Columbia River Basin: An Evaluation of a Flow Restoration Accounting Framework. McCoy AL; Holmes SR; Boisjolie BA Environ Manage; 2018 Mar; 61(3):506-519. PubMed ID: 28856404 [TBL] [Abstract][Full Text] [Related]
11. Modeling the hydrological significance of wetland restoration scenarios. Martinez-Martinez E; Nejadhashemi AP; Woznicki SA; Love BJ J Environ Manage; 2014 Jan; 133():121-34. PubMed ID: 24374168 [TBL] [Abstract][Full Text] [Related]
12. Documenting success stories of management of phosphorus emissions at catchment scale: an example from the pilot river Odense, Denmark. Kronvang B; Tornbjerg H; Hoffmann CC; Poulsen JR; Windolf J Water Sci Technol; 2016 Nov; 74(9):2097-2104. PubMed ID: 27842029 [TBL] [Abstract][Full Text] [Related]
13. Spatial optimization of watershed management practices for nitrogen load reduction using a modeling-optimization framework. Yang G; Best EPH J Environ Manage; 2015 Sep; 161():252-260. PubMed ID: 26188990 [TBL] [Abstract][Full Text] [Related]
14. Successful reduction of diffuse nitrogen emissions at catchment scale: example from the pilot River Odense, Denmark. Windolf J; Tornbjerg H; Hoffmann CC; Poulsen JR; Blicher-Mathiesen G; Kronvang B Water Sci Technol; 2016; 73(11):2583-9. PubMed ID: 27232393 [TBL] [Abstract][Full Text] [Related]
15. [Impact on nitrogen and phosphorous export of wetlands in Tianmu Lake watershed]. Li ZF; Liu HY; Li HP Huan Jing Ke Xue; 2012 Nov; 33(11):3753-9. PubMed ID: 23323403 [TBL] [Abstract][Full Text] [Related]
16. Land use impacts on river health of Uma Oya, Sri Lanka: implications of spatial scales. Jayawardana JM; Gunawardana WD; Udayakumara EP; Westbrooke M Environ Monit Assess; 2017 Apr; 189(4):192. PubMed ID: 28357718 [TBL] [Abstract][Full Text] [Related]
17. Landscape characteristics of a stream and wetland mitigation banking program. BenDor T; Sholtes J; Doyle MW Ecol Appl; 2009 Dec; 19(8):2078-92. PubMed ID: 20014580 [TBL] [Abstract][Full Text] [Related]
18. Ecological assessment of river networks: From reach to catchment scale. Kuemmerlen M; Reichert P; Siber R; Schuwirth N Sci Total Environ; 2019 Feb; 650(Pt 1):1613-1627. PubMed ID: 30308847 [TBL] [Abstract][Full Text] [Related]
19. Development of a HEC-HMS-based watershed modeling system for identification, allocation, and optimization of reservoirs in a river basin. Srinivas R; Singh AP; Deshmukh A Environ Monit Assess; 2017 Dec; 190(1):31. PubMed ID: 29260336 [TBL] [Abstract][Full Text] [Related]
20. Establishing aquatic restoration priorities using a watershed approach. Bohn BA; Kershner JL J Environ Manage; 2002 Apr; 64(4):355-63. PubMed ID: 12141156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]