These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30171350)

  • 1. A multiscale model for the simulation of cerebral and extracerebral blood flows and pressures in humans.
    Gadda G; Majka M; Zieliński P; Gambaccini M; Taibi A
    Eur J Appl Physiol; 2018 Nov; 118(11):2443-2454. PubMed ID: 30171350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new hemodynamic model for the study of cerebral venous outflow.
    Gadda G; Taibi A; Sisini F; Gambaccini M; Zamboni P; Ursino M
    Am J Physiol Heart Circ Physiol; 2015 Feb; 308(3):H217-31. PubMed ID: 25398980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Derivation of closed-form expression for the cerebral circulation models.
    Helal MA
    Comput Biol Med; 1994 Mar; 24(2):103-18. PubMed ID: 8026172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Mathematical model of intracranial blood-cerebrospinal fluid dynamics system applied to the study of extreme conditions].
    Grigorian SS; Simonov LG; Tsaturian AK
    Kosm Biol Aviakosm Med; 1990; 24(2):25-9. PubMed ID: 2366500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of blood flow in an anatomically-accurate cerebral venous tree.
    Ho H; Mithraratne K; Hunter P
    IEEE Trans Med Imaging; 2013 Jan; 32(1):85-91. PubMed ID: 22949055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Numerical simulation of the relationship between blood pressure and blood stream of arteries].
    Shi X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1121-3, 1127. PubMed ID: 16422080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Coupled Lumped-Parameter and Distributed Network Model for Cerebral Pulse-Wave Hemodynamics.
    Ryu J; Hu X; Shadden SC
    J Biomech Eng; 2015 Oct; 137(10):101009. PubMed ID: 26287937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical Study of Cerebroarterial Hemodynamic Changes Following Carotid Artery Operation: A Comparison Between Multiscale Modeling and Stand-Alone Three-Dimensional Modeling.
    Liang F; Oshima M; Huang H; Liu H; Takagi S
    J Biomech Eng; 2015 Oct; 137(10):101011. PubMed ID: 26343584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical applicability of a mathematical model in assessing the functional ability of the communicating arteries of the circle of Willis.
    Orosz L; Hoksbergen AW; Molnár C; Siró P; Cassot F; Marc-Vergnes JP; Fülesdi B
    J Neurol Sci; 2009 Dec; 287(1-2):94-9. PubMed ID: 19758603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of local blood flow in the carotid and cerebral arteries under altered gravity.
    Kim CS; Kiris C; Kwak D; David T
    J Biomech Eng; 2006 Apr; 128(2):194-202. PubMed ID: 16524330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simulation model to study the role of the extracranial venous drainage pathways in intracranial hemodynamics.
    Gadda G; Taibi A; Sisini F; Gambaccini M; Sethi SK; Utriainen D; Haacke EM; Zamboni P; Ursino M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7800-3. PubMed ID: 26738101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics.
    Ursino M; Lodi CA
    J Appl Physiol (1985); 1997 Apr; 82(4):1256-69. PubMed ID: 9104864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid pressure-to-flow dynamics of cerebral autoregulation induced by instantaneous changes of arterial CO2.
    Liu J; Simpson DM; Kouchakpour H; Panerai RB; Chen J; Gao S; Zhang P; Wu X
    Med Eng Phys; 2014 Dec; 36(12):1636-43. PubMed ID: 25287624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of hydrodynamic and functional nonlinearities of blood flow in the cerebral vasculature on cerebral perfusion and autoregulation pressure reserve.
    Piechna A; Cieślicki K
    Sci Rep; 2023 Apr; 13(1):6229. PubMed ID: 37069176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Modelling cerebrovascular circulation from the viewpoint of autoregulation mechanisms].
    Cieślicki K; Cieśla D; Ciszek B
    Neurol Neurochir Pol; 2000; 34(5):959-71. PubMed ID: 11253484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An anatomically detailed arterial network model for one-dimensional computational hemodynamics.
    Blanco PJ; Watanabe SM; Passos MA; Lemos PA; Feijóo RA
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):736-53. PubMed ID: 25347874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A whole-body mathematical model for intracranial pressure dynamics.
    Lakin WD; Stevens SA; Tranmer BI; Penar PL
    J Math Biol; 2003 Apr; 46(4):347-83. PubMed ID: 12673511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Outflow boundary conditions for blood flow in arterial trees.
    Du T; Hu D; Cai D
    PLoS One; 2015; 10(5):e0128597. PubMed ID: 26000782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined transfer function analysis and modelling of cerebral autoregulation.
    Payne SJ; Tarassenko L
    Ann Biomed Eng; 2006 May; 34(5):847-58. PubMed ID: 16708269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.