BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 30171534)

  • 1. Recent Advances and Clinical Applications of Exon Inclusion for Spinal Muscular Atrophy.
    Son HW; Yokota T
    Methods Mol Biol; 2018; 1828():57-68. PubMed ID: 30171534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nusinersen in the Treatment of Spinal Muscular Atrophy.
    Goodkey K; Aslesh T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():69-76. PubMed ID: 30171535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vitro Evaluation of Antisense-Mediated Exon Inclusion for Spinal Muscular Atrophy.
    Touznik A; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():439-454. PubMed ID: 30171558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systemic and ICV Injections of Antisense Oligos into SMA Mice and Evaluation.
    Aslesh T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():455-465. PubMed ID: 30171559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy.
    Singh NN; Howell MD; Androphy EJ; Singh RN
    Gene Ther; 2017 Sep; 24(9):520-526. PubMed ID: 28485722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron.
    Singh NK; Singh NN; Androphy EJ; Singh RN
    Mol Cell Biol; 2006 Feb; 26(4):1333-46. PubMed ID: 16449646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges and future perspective of antisense therapy for spinal muscular atrophy: A review.
    Nakevska Z; Yokota T
    Eur J Cell Biol; 2023 Jun; 102(2):151326. PubMed ID: 37295266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of valproic acid and morpholino splice-switching oligonucleotide produces improved outcomes in spinal muscular atrophy patient-derived fibroblasts.
    Farrelly-Rosch A; Lau CL; Patil N; Turner BJ; Shabanpoor F
    Neurochem Int; 2017 Sep; 108():213-221. PubMed ID: 28389270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal muscular atrophy: antisense oligonucleotide therapy opens the door to an integrated therapeutic landscape.
    Wood MJA; Talbot K; Bowerman M
    Hum Mol Genet; 2017 Oct; 26(R2):R151-R159. PubMed ID: 28977438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved antisense oligonucleotide design to suppress aberrant SMN2 gene transcript processing: towards a treatment for spinal muscular atrophy.
    Mitrpant C; Porensky P; Zhou H; Price L; Muntoni F; Fletcher S; Wilton SD; Burghes AH
    PLoS One; 2013; 8(4):e62114. PubMed ID: 23630626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morpholino-Mediated Exon Inclusion for SMA.
    Zhou H; Muntoni F
    Methods Mol Biol; 2018; 1828():467-477. PubMed ID: 30171560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined treatment with the histone deacetylase inhibitor LBH589 and a splice-switch antisense oligonucleotide enhances SMN2 splicing and SMN expression in Spinal Muscular Atrophy cells.
    Pagliarini V; Guerra M; Di Rosa V; Compagnucci C; Sette C
    J Neurochem; 2020 Apr; 153(2):264-275. PubMed ID: 31811660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bifunctional RNAs targeting the intronic splicing silencer N1 increase SMN levels and reduce disease severity in an animal model of spinal muscular atrophy.
    Osman EY; Yen PF; Lorson CL
    Mol Ther; 2012 Jan; 20(1):119-26. PubMed ID: 22031236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing Effective Antisense Oligonucleotides for Exon Skipping.
    Shimo T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1687():143-155. PubMed ID: 29067661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antisense Oligonucleotide Induction of the hnRNPA1b Isoform Affects Pre-mRNA Splicing of
    Toosaranont J; Ruschadaariyachat S; Mujchariyakul W; Arora JK; Charoensawan V; Suktitipat B; Palmer TN; Fletcher S; Wilton SD; Mitrpant C
    Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA in spinal muscular atrophy: therapeutic implications of targeting.
    Singh RN; Seo J; Singh NN
    Expert Opin Ther Targets; 2020 Aug; 24(8):731-743. PubMed ID: 32538213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():79-90. PubMed ID: 30171536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Splicing regulation in spinal muscular atrophy by an RNA structure formed by long-distance interactions.
    Singh NN; Lee BM; Singh RN
    Ann N Y Acad Sci; 2015 Apr; 1341():176-87. PubMed ID: 25727246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy.
    Singh NN; Lee BM; DiDonato CJ; Singh RN
    Future Med Chem; 2015; 7(13):1793-808. PubMed ID: 26381381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse.
    Porensky PN; Mitrpant C; McGovern VL; Bevan AK; Foust KD; Kaspar BK; Wilton SD; Burghes AH
    Hum Mol Genet; 2012 Apr; 21(7):1625-38. PubMed ID: 22186025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.