BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30171556)

  • 1. Optimization of 2',4'-BNA/LNA-Based Oligonucleotides for Splicing Modulation In Vitro.
    Shimo T; Obika S
    Methods Mol Biol; 2018; 1828():395-411. PubMed ID: 30171556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and In Vitro Evaluation of Splice-Switching Oligonucleotides Bearing Locked Nucleic Acids, Amido-Bridged Nucleic Acids, and Guanidine-Bridged Nucleic Acids.
    Shimo T; Nakatsuji Y; Tachibana K; Obika S
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33805378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and evaluation of locked nucleic acid-based splice-switching oligonucleotides in vitro.
    Shimo T; Tachibana K; Saito K; Yoshida T; Tomita E; Waki R; Yamamoto T; Doi T; Inoue T; Kawakami J; Obika S
    Nucleic Acids Res; 2014 Jul; 42(12):8174-87. PubMed ID: 24935206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short (16-mer) locked nucleic acid splice-switching oligonucleotides restore dystrophin production in Duchenne Muscular Dystrophy myotubes.
    Pires VB; Simões R; Mamchaoui K; Carvalho C; Carmo-Fonseca M
    PLoS One; 2017; 12(7):e0181065. PubMed ID: 28742140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a tri-chromatic reporter cell line for the rapid and simple screening of splice-switching oligonucleotides targeting DMD exon 51 using high content screening.
    Shimo T; Tachibana K; Obika S
    PLoS One; 2018; 13(5):e0197373. PubMed ID: 29768479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Application of a Short (16-mer) Locked Nucleic Acid Splice-Switching Oligonucleotide for Dystrophin Production in Duchenne Muscular Dystrophy Myotubes.
    Carvalho C; Carmo-Fonseca M
    Methods Mol Biol; 2020; 2161():37-50. PubMed ID: 32681504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing Effective Antisense Oligonucleotides for Exon Skipping.
    Shimo T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1687():143-155. PubMed ID: 29067661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vitro Evaluation of Antisense-Mediated Exon Inclusion for Spinal Muscular Atrophy.
    Touznik A; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():439-454. PubMed ID: 30171558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel human muscle cell model of Duchenne muscular dystrophy created by CRISPR/Cas9 and evaluation of antisense-mediated exon skipping.
    Shimo T; Hosoki K; Nakatsuji Y; Yokota T; Obika S
    J Hum Genet; 2018 Mar; 63(3):365-375. PubMed ID: 29339778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Splice-switching antisense oligonucleotides as therapeutic drugs.
    Havens MA; Hastings ML
    Nucleic Acids Res; 2016 Aug; 44(14):6549-63. PubMed ID: 27288447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-l-Locked Nucleic Acid-Modified Antisense Oligonucleotides Induce Efficient Splice Modulation In Vitro.
    Raguraman P; Wang T; Ma L; Jørgensen PT; Wengel J; Veedu RN
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32244535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():79-90. PubMed ID: 30171536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico screening based on predictive algorithms as a design tool for exon skipping oligonucleotides in Duchenne muscular dystrophy.
    Echigoya Y; Mouly V; Garcia L; Yokota T; Duddy W
    PLoS One; 2015; 10(3):e0120058. PubMed ID: 25816009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superior Silencing by 2',4'-BNA(NC)-Based Short Antisense Oligonucleotides Compared to 2',4'-BNA/LNA-Based Apolipoprotein B Antisense Inhibitors.
    Yamamoto T; Yasuhara H; Wada F; Harada-Shiba M; Imanishi T; Obika S
    J Nucleic Acids; 2012; 2012():707323. PubMed ID: 23056920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Exon Inclusion Induced by Splice Switching Antisense Oligonucleotides in SMA Patient Fibroblasts.
    Maruyama R; Touznik A; Yokota T
    J Vis Exp; 2018 May; (135):. PubMed ID: 29806836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Tricyclo-DNA Antisense Oligonucleotides for Exon Skipping.
    Relizani K; Goyenvalle A
    Methods Mol Biol; 2018; 1828():381-394. PubMed ID: 30171555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of therapeutic splice-switching oligonucleotides.
    Disterer P; Kryczka A; Liu Y; Badi YE; Wong JJ; Owen JS; Khoo B
    Hum Gene Ther; 2014 Jul; 25(7):587-98. PubMed ID: 24826963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pro-apoptotic effects of splice-switching oligonucleotides targeting Bcl-x pre-mRNA in human glioma cell lines.
    Li Z; Li Q; Han L; Tian N; Liang Q; Li Y; Zhao X; Du C; Tian Y
    Oncol Rep; 2016 Feb; 35(2):1013-9. PubMed ID: 26718027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2'-O,4'-C-Methylene-Bridged Nucleic Acids Stabilize Metal-Mediated Base Pairing in a DNA Duplex.
    Nakagawa O; Fujii A; Kishimoto Y; Nakatsuji Y; Nozaki N; Obika S
    Chembiochem; 2018 Nov; 19(22):2372-2379. PubMed ID: 30168891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of RNA Splicing by Oligonucleotides: Mechanisms of Action and Therapeutic Implications.
    Sergeeva OV; Shcherbinina EY; Shomron N; Zatsepin TS
    Nucleic Acid Ther; 2022 Jun; 32(3):123-138. PubMed ID: 35166605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.